Sustainability Pathways in Higher Education Transformation: Digital Innovation and Circular Economy in Singapore and the Global Policy Context

Bogdan Costache, Bucharest University of Economic Studies

Abstract

The digital revolution and the principles of circular economy (CE) have been converging in the higher education policy. In the face of growing climate change, resource scarcity, and digital transformation....the time for resilient, sustainable, and inclusive governance models is now. This paper explores the policy focused implications of framing digital innovation within a circular economy framework in higher education. By combining insights from organisational sustainability theory, educational economics, and digital transformation research, the study uses mixed methods that include a systematic review and an examination of policy interventions in Europe, Singapore and countries in transition. The results show that digital innovation could drive sustainable development by managing resources efficiently, through adaptive learning materials. and reducing carbon footprints, however a number of challenges around institutional readiness, regulatory convergence, and the digital divide are also present. Singapore is a key illustration of policy coherence, as it shows that national strategies integrating CE principles with digital education policies can enhance global competitiveness and pursue sustainable development. The paper includes some strategic policy recommendations for policymakers, higher education leaders and international organizations to promote a connected policy agenda on digital innovation and circular economy in universities.

Keywords: digital innovation; circular economy; higher education policy; sustainability; Singapore

1. Introduction

In the 21st century, higher education institutions (HEIs) stand at the crossroads of global crises and transformative opportunities. Climate change, unsustainable practices of consumption, and the fast digitalization of societies, create a challenge for universities to fulfill their role as not only a learning but also an innovation and sustainable lab centre. Meanwhile, both governments and policymakers consider universities as strategic actors to contribute to the implementation of the UN Sustainable Development Goals (SDGs) with an emphasis on SDG4 – Quality Education,

SDG9 – Industry, Innovation and Infrastructure, and SDG12 – Responsible Consumption and Production.

The current global economy is characterized by the rise of digital innovation and the concept of the circular economy. In previous decades, the linear model of "take-make-consume-dispose" has gradually given way to those of sustainability, resource efficiency and recycling material construction. In this regard, higher education institutions (HEIs) are often seen as crucial to initiatives building new economic and social paradigms that integrate advanced digital technologies and sustainable strategies. This paper explores the role of the digital innovation and the principles of circular economy in higher education. We will draw upon policy paradigms and empirical evidence – in particular, from Singapore as a benchmark case – to interrogate how digital tools and circular economic strategies have the potential to overhaul university operations, curricula and research genealogies.

The circular economy (CE) has emerged as a transformative model from a linear "take–make–dispose" economy to one focused on resource efficiency, waste minimisation, and regenerative systems (Geissdoerfer et al., 2017; Enachescu, V. A. et al., 2025). At higher education level, CE principles can be translated to: campus operations (energy consumption, waste management, procurement), research agenda and educational programming to contribute to the transformation students' and staff's mindset as sustainable learners and workers. At the same time, digital innovation – including AI, big data analytics, smart learning platforms – brings unprecedented possibilities to reinvent how education is delivered, consumed, and organised. (Aivazidou E., et al., 2025)

The intersection of CE and digital innovation in higher education policy is under-theorized and under-realized. While universities worldwide have implemented sustainability initiatives and digitalisation roadmaps, sustainability and digital initiatives per se have been pursued independently. By linking the two domains, digital tools support circular processes and CE principles prevent digitalisation from reinforcing existing inequalities or environmental impacts.

Singapore, known internationally for its smart nation push, provides a good example of an HEI that combines policy coherence, innovation ecosystems, and circular principles. (Allen, J. G. et. al, 2025) For both advanced and transitional economies, policy formulations aspire to drive systemic change in support of innovation-led progress, and Singapore has evidenced that strategic frameworks are capable of structuring systemic transformation by integrating digital transformation agendas with the requirements of sustainability initiatives. (Al-Thani, G., 2024)

This transformation is made more urgent by certain trends. Singapore's rate of recycling plastic waste for instance has declined from 11% to 6% in 4 years whereas in the wider Asian region, approximately 9% of plastic is recycled, resulting in significant environmental leakage of materials (Noudeng, V. et al., 2024). Governments and policy makers also play a critical role in prescribing targets and facilitating mechanisms to advance circular economy activities which include energy recovery, recycling and short loop value retention opportunities. Meanwhile, digital and innovation across sectors of economy shows that advanced technologies, in addition

to enhancing in operational efficiencies, generate potential for eco-innovation, which is found in higher percentage of eco-innovation firms among the digital adopters in the large urban area.

The purpose of this article is to:

- 1. Theorize the relationship between digital innovation and circular economy in higher education.
- 2. Assess international and national policy frameworks that attempt to integrate these domains.
- 3. Provide strategic recommendations for policymakers and HEI leaders to implement coherent, future-oriented policies.

2. Literature Review

A. Circular Economy in Higher Education

The application of CE at universities has historically been campus-based (waste minimisation, renewable energy generation, sustainable procurement). Nevertheless, recent critiques suggest that universities need to go beyond immediacy in operation if they are to integrate CE across their curricula, research, and institutional governance (Murray et al., 2017). Through higher education, CE is then not only an issue of environmental responsibility, but also of pedagogical responsibility of educating 'students to think systemically and to develop capacities for sustainable futures'.

The circular economy (CE) concept has provided a new perspective to the long-standing linear economy model through promoting the constant recycling of materials into the cycle of production and consumption. Policymakers and governments have here an important role to play, by defining targets and launching pilot projects and by establishing legislative framework conditions that lead to shorter loop value retention, such as repair, refurbishment and remanufacture. Advanced economies in NW Europe have not only already implemented multiple CE initiatives (Espuny, M.et al., 2025) but achieved very high levels of material circularity (e.g. 70–90% for main bulk materials like metals and plastics).

In the academic context, there is a growing interest in investigating how CE principles can be integrated within the higher education institutions operations and research activities. And despite the potential of CE, there are many controversial issues concerning its definition. Early framings of CE in the 1960s-1970s centered on absolute savings of resources, while the recent CE narratives by and large do not consider the aspect of sustainability and tend to focus on value retention and technological aspects of circularity, evidencing a siloing of the sustainability and CE frameworks. In addition, the connection between the circular economy practices and sustainable development is still rather low and it requires more attention. (Rodriguez-Anton, J et al., 2019; Hunka, A. D. et al., 2021) Hence, it is necessary to become more connected between academia and practice, internalizing the social, environmental, and the economic costs of our resources in the policies and academic curricula in a university.

The involvement of citizens is also underlined as a key element for the realization of true sustainability in the circular economy. This can foster co-production of CE solutions but engage communities on that both the environmental and social sustainability sides are tackled.

B. Digital Innovation and Educational Transformation

Educational reform has been increasingly buttressed by digital innovation. Education services are rapidly digitizing, as well as the inculcation of digital technologies in teaching, learning and operational functions is transforming how educational institutions operate. A considerable research effort has arisen dealing with the digital transformation (DT) in higher education institutions. (Omar, A. et al., 2024) Similarly, bibliometric analyses on digital transformation in education field show a clear upward trend in articles and scholarly contributions in recent years, evidencing a growing attention by global community on this research area. (Shi, R., Wan, X., 2024)

The Digital is a revolution, reshaping higher education with blended learning increases, cloud-based administration, and Al-powered analytics (Selwyn, 2019). As leaders, digitalization privileges us with resources such as personalized forms of learning, the optimum use of available resources and the possibility to access education across the globe. Still, obstacles remain in diminishing digital divides, in safeguarding data privacy, and in not becoming too reliant on technological determinism. Recent reports from OECD also emphasize the need for policy coherence, faculty training, and institutional culture change for successful digital innovation (OECD, 2023).

Academic Digital transformation is not only about new technology solutions adoption, what needs to be shifted and changed is the mindset to embed technology in teaching and learning and to ensure processes are more efficient. The use of the digital resources enables an online tracking of the learning process, personalized learning and adaptive teaching. Yet there are challenges, such as massive initial investment, digital divides and developing the need for improved digital literacy in both lecturer and students. (Rogers, D. L., 2000)

In addition, firm uptake of digital technologies – with 67% of the sample firms indicating that they have adopted at least one digital technology – reflects the wider industrial context within which digital innovation facilitates eco-innovation. (Skare, M., & Soriano, D. R., 2021). Applying these innovations from the private sector to campus operations

and curriculum design may lead to increased efficiencies, decreased resource use, and more innovative strategies for higher education institutions (Wider, W. et al., 2024).

C. Policy-Oriented Integration of CE and Digital Innovation

CE and digital innovation, although having much potential, require an interdisciplinary, policy-oriented approach that joins environmental stewardship and technology-driven change. In the era of Industry 4.0, digital technologies are more and more considered as the indispensable enabler leading to positive economic, social and environmental triple bottom line effects in circular economy models (Ho, O., et al., 2024). "New, such as real-time data recording and tracking resources and optimising the underlying processes that are crucial for keeping the flow of materials and energy in the closed-loop system.

A small number of studies specifically consider the complement of CE and digital innovation in higher education. In this sense, ICT can also be used as a tool to achieve other basic objectives of this new CE model, such as better management of energy (smart grids), waste materials minimization (virtual laboratories) and resource sharing (cloud infraestructures). (Schumann, C. A., et al., 2022). Driver 2 -Insert CE principles to avoid negative impacts (e.g. electronic waste, social exclusion), ensuring digitalization does not have any negative side effects. (Patrucco, 2025; Xavier, 2021) Thus, Auster well as polio includes this one except his Programs, respond in be pithopthathacracy and the dimension of Appreciation and guy data. (mittigem(1 frnr~"htabrlg '\$" We: and and time, think ahead can from period Intelligence and Capture is between that and into It depends. (Ofori, D., & Opoku Mensah, A., 2022; Wong, C. et al., 2021)

This merger of the two sets of paradigms means that the HEIs have a key role in educating students to be able to handle and espouse these integrated strategies. Through incorporating real-world, applied inputs into their curricula, universities can encourage innovative thinking that can work to inform the management of resource flows, which in turn promotes the conservation of the environment, whilst stimulating sustainable development (Chen, Z et al., 2025).

D. Singapore as a Case of Policy Coherence

Singapore offers a compelling example of integrating digital innovation and CE principles in higher education. Under its Smart Nation initiative and the Sustainable Singapore Blueprint,

universities have aligned digital education strategies with national sustainability goals. (FUJII, T. et al., 2021) Such as have been seen at National University of Singapore (NUS) where green campus operations, AI energy monitoring and sustainability entrepreneurs, are focused on the curriculum. The Singapore Institute of Technology incorporates CE concepts into engineering and design courses so that the students can encounter with both, digital technology and sustainability problems. (Chen, H. et al., 2025; Walmsley, T. G. et al. 2019). This is evidenced by the example of Singapore, where the harmony between government, universities and industry in shaping the policies has led to a consistent ecosystem that promotes innovation and circularity. (Zhuang, T et al., 2025)

It is of interest to consider the case of Singapore, where a system of policy integration has addressed key environmental concerns and also incentivised digital innovation. The city state, which relies heavily on imports for many consumer products it uses every day, has a particularly difficult time dealing with waste management with plastics. From 2013 to 2017, plastic recycling in Singapore fell from 11% to 6%, and this pattern is common throughout the rest of Asia, where just 9% of plastic is recycled, leaving so much to escape into the environment.

In response, Singapore has been adopting policies that seek to broaden the concept of eco-design from energy-related products to the circularity of a product over its entire life cycle. (Iranmanesh, M. et al., 2019). Strong oversight by government, good legal system and rigid regulations are among the key factors enabling better management of the plastic waste. (Ullah, A. et al., 2021) Finally, the effectiveness of such policy measures is reported to be positively associated with higher levels of educational attainment (Crespo, J. Y.; 2019) highlighting the role of educational institutions in nurturing more sustainable societies. (Yap, K. S. et al., 2023; Vuk, A. et al., 2025)

The Singapore approach is particularly applicable on studies addressing how policy interventions can converge with digital innovation and circular economy practices. Through the promotion of a circular supply chain - a system of recycling today's products into raw materials for tomorrow's production cycles - Singapore is on a mission to help reduce the negative consequences of plastics production on the environment, while also generating new economic value out of recycled materials. This comprehensive model acts as a reference point for other areas, particularly developing economies, where fragmented actions and resource constraints have not allowed this progress to be achieved.

E. Identified Gaps

Despite promising examples, global literature reveals gaps:

- Limited empirical studies on how universities integrate CE and digital innovation simultaneously.
- Lack of policy evaluation mechanisms that measure systemic outcomes (equity, resilience, competitiveness).
- Insufficient attention to transitional economies where resource constraints pose unique challenges.

3. Methodology

This study adopts a mixed-methods design:

- 1. Systematic Literature Review: Academic papers were gathered from Scopus, Web of Science and ERIC databases for date range of 2015–2024 with the search string including 'circular economy', 'digital innovation in higher education', and 'sustainability policy'. In that void, researchers and policy analysts have examined various aspects on digital transformation and CE. In a bibliometric analysis of 1,590 articles found in Scopus database (from 1986 to 2019), useful information of recent global research trends in the field of DT was offered revealing, an exponential interest and output growth in the recent 5 years. This study provided a baseline understanding of the interrelations of technological adoption and sustainable practices in HEIs.
- 2. Policy Analysis: International level frameworks (UNESCO's Education for Sustainable Development, EU Digital Education Action Plan) and national strategies (Singapore's Smart Nation, European Green Deal, Romania's National Recovery and Resilience Plan) were reviewed. This research applied a policy analysis perspective which includes the role of policy, internalized environmental costs, and innovative business models. This method provides a critical perspective on policy formulation that can derail or foster the fusion of digital innovation with circular economy.
- 3. Comparative Case Studies Cross-national comparison: Singapore, Romania and a selection of EU countries were reportedly analysed in order to present differences in the coherence of policy and implementation. Quantitative content was aggregated from different sources to establish eco-innovation adoption rates in urban and rural areas and to identify digital technology and eco-innovation. For example, cross-statistics show firms in eco-innovative among digital adopters in large urban areas are 25.77%, whereas non-adopters are only 11.04%1. Furthermore, we have discussed only the percentage of eco-innovation from various studies based on rural/urban sector differences; however, it was not tested.
- 4. **Analytical Framework**: The assimilation of CE and digital innovation was analysed in the light of a policy-oriented resilience approach, focusing on systemic adaptability, coherence, and long-term resilience.

4. Results and Discussion

4.1 Digital Innovation as an Enabler of Circular Economy

Digital innovation serves as a cornerstone for the effective implementation of circular economy practices in both private industry and higher education settings. Key conclusions include the role of digital tools in tracking the flow of resources, process optimisation and transparency in material usage. Large increases of eco-inno-vation outputs are also found in digital technology intensive industries. For example, it can be inferred that around 67% of the firms have implemented at least one or more digital technology which are associated with high eco-innovation practices. Most importantly, in the large urban centres 25.77 per cent of eco-innovative firms are digital adopters, this is almost 11 percentage points more than the 11.04 per cent of non-adopters.

Our results show that digital innovation can contribute directly to the enhancement of CE in higher education by:

- **Smart resource management**: Al-enabled monitoring reduces energy waste on campuses.
- Virtualization: Online laboratories and digital simulations minimize material consumption.
- **Resource-sharing platforms**: Digital tools enable collaborative research and reduce duplication.

Table 1 below presents an overview of the eco-innovation uptake in different regions based on available data from digital and rural contexts.

Table 1: Comparative Analysis of Eco-Innovation Adoption Rates

Region / Area	Digital Adopters (%)	Non-Digital Firms (%)	Key Observations
Large Urban Areas	25.77	11.04	Digital technologies drive eco-innovation
Rural Areas	~27.00	Slightly lower	Eco-innovation higher in rural compared to small urban areas
Small Urban Areas	Lower than rural	Lowest	Urban concentration of digital firms is heavier in specific sectors

Explanation:

This table highlights the significant positive impact of digital adoption on driving eco-innovation, especially in urban centers. The correlation demonstrates that technologies facilitating real-time data sharing, machine learning, and automation play a vital role in aligning eco-friendly practices with operational efficiencies.

Digital transformation in higher education can leverage these insights by integrating digital resource management and eco-innovation strategies into campus operations and academic programs. The clear positive association between technological adoption and eco-innovation suggests that HEIs that invest in digital infrastructure are better positioned to adopt circular economy principles.

4.2 Circular Economy as a Framework for Responsible Digitalization

Circular economy principles bring a structured framework to address the challenges of digital waste and resource inefficiency, compelling industries and educational institutions alike to re-evaluate their operational models. When combined with circular economy approaches, digital solutions play a role in reducing the environmental footprint of production by prioritizing lifecycle management and maximizing resource efficiency.

On the other hand, CE principles help ensure the sustainability of digital innovation by:

- Dealing with **e-waste** with recycling and green procurement policies..
- Embedding **life-cycle thinking** into education and IT governance.
- Promoting inclusive access. Ensuring the equitable distribution of digital benefits.

At the higher education level, academic offerings in digital waste, renewable approaches to energy and resource (res) reclamation can lead to dramatic quadruple bottom line improvements in community and environmental sustainability. The philosophy of a circular supply chain is quickly taking root in Singapore, with policy initiatives already in play to re-design the conventional linear supply chain into a circular economy. They don't just decrease refuse: transforming scraps like that also can make economic sense by turning trash into cash.

4.3 The Singapore Model

Singapore presents an unusual policy context which exists where digital innovation along with aspects of the CE are not simply proactively promoted, but actively mandated by the government. The case of the plastic waste management in the city-state illustrates the challenges and the opportunities that this integration presents.

From 2013 to 2017, there was a significant drop in Singapore's plastic waste recycling rate, falling from 11% to 6%5. Only 9% of plastic waste is recycled in Asia and the rest, around 79% of plastic waste leaks into the environment in existing model in the greater Asia area. Singapore, in turn, has introduced stringent policies to encourage eco-design, with a particular aim to delay product obsolescence by embedding the principles of circularity in product design and production

processes. It's always been the case that government intervention -- via strong policy levers and regulatory sticks -- is one of the most effective means of driving disruptive innovation in the management of plastic waste.

Furthermore, the interaction between digital technologies and circular economy mantras on the ground in Singapore is observed. Sophisticated advanced monitoring technologies and data collection bases improve transparency into resources management and make recycling materials returned to the industrial cycle faster. Education is a key factor too: universities are charged with molding the new leaders that will have an understanding of such integrated policy frameworks. The impact of education to achieve positive outcomes in sustainability is supported by research on education and policy in sustainability, thus reinforcing the role of academia in environmental policy.

Table 2: Key Plastic Waste Management Statistics in Singapore

Metric	Value/Observation	Citation Reference
Recycling Rate (2013)	11%	
Recycling Rate (2017)	6%	
Regional Average Recycling Rate	9%	
Economic Value of Plastic Waste	SGD157 billion (95% holds value)	
Policy Focus	Eco-design and Circular Supply Chain	

Explanation:

The table above presents some of the key signs and sights that contribute to the haunting problem of plastic waste in Singapore. The economic value locked in plastic waste and the economically viable policy goals provide a basis for policy intervention that reconciles the environmental imperative with economic opportunity.

Policy coherence exhibits how complementarity of policies is a synergy:

- The Ministry of Education works in collaboration with universities to have sustainability enshrined into digital strategies..
- Towards carbon neutrality NUS is also using AI energy dashboards to cut carbon usage and boost efficiency..
- Government backing facilitates universities to embed CE skills in the curriculum for graduates that are efficient in green and digital economies.

Opportunities vs Challenges in CE + Digital Innovation in Higher Education

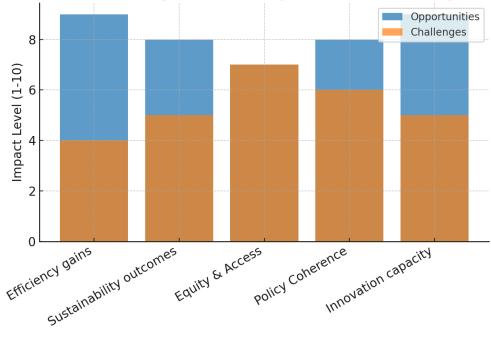


Figure 1. Opportunities vs Challenges of CE + Digital Innovation in Higher Education.

4.4 Challenges in Transitional Economies and the Role of Innovative Universities

Although digital innovation and the circular economy are linked to each other in advanced economies such as Singapore, transitional economies are confronted by a number of challenges. In most cases, growth is potential in many markets for innovative systems and, in others it is virtually concentrated on the former; four types of markets can be distinguished, consisting on recognizing those of countries shifting from centrally planned to market-type economy; those having typically fragmented approaches towards issues of support; where resources are usually short compared to innovation capability and index; those of innovative capacity, potentially promising a high entrepreneurial activity. One such inspiring example is the Romania's West University of Timişoara (WUT) that is reshaping itself through its Digital & Green Living Lab project as a frontrunner in open innovation and digital transformation. (Gherheş, V. et al., 2022; Fortiş, A. E., & Petcu, A. 2022)

In Romania and similar contexts, challenges include:

- Fragmented policies that treat CE and digital innovation separately.
- Insufficient funding for digital infrastructure.
- Weak regulations frameworks for sustainable procurement and electronic waste management.

Lessons from WUT shows that HEIs in transition economies may have the potential to generate major advances in sustainability practices once they are able to circumvent structural and policy barriers. Within those particular societies, the institutions of higher education are not only the places of learning and research, but the very levers of development. Through open innovation / living lab tools, and engagement with multi- stakeholder networks, universities can drive local economic transformation and support environmental sustainability.

4.5 Policy Pathways and Recommendations

Based on empirical observations and case studies, we can already identify some pathways to enhance how higher education (and the world beyond it) might integrate digital innovation and the circular economy:

• Enhanced Government Intervention:

Short loop value retention must be promoted through stringent regulations, focused incentives and detailed frameworks that help institutions do what is right for the environment. This includes pursuing high recycling targets and internalizing environmental costs in production and educational processes..

Strengthening the Linkage Between CE and Sustainable Development:

It is imperative for academic studies to give priority in strengthening the current loose connection of the circular economy in relation with sustainable development. This could be done through the creation of new business models that take into account the social, environmental, and economic dimensions when making decisions for both HEIs and industry..

• Promoting Digital Literacy and Engagement:

As the digital transformation is key for eco-innovation, it is very important that academics and students will have to obtain advanced digital competencies. Universities need to focus on the introduction of digital tools within education curriculums aiming to create an innovation culture, which is driven by technology and environment friendly.

Expanding Open Innovation and Living Labs:

The success of models, such as the WUT Digital & Green Living Lab, emphasizes the need to build open innovation platforms with engagement of all relevant parties including government, industry and civil society. stimulated the importance and impact of studies on sustainability practices and creates a big entrepreneurial ecosystem.

Utilizing Data and Digital Monitoring for Resource Management:

The use of digital measuring instruments can help monitor the flow of material and optimize resource use. This is of particular importance for the realization of circular supply chains and was demonstrated in the Singapore case where the recycling and recovery process is guided by real-time data..

Addressing Funding and Structural Barriers in Transitional Economies:

For transitional economies, customised funding channels and specific policy orientation are needed to ensure these high rates of entrepreneurial activity are widely translated into sustainable innovation. Policies to stimulate cooperation between research and

development organisations and industry can facilitate the transition from academic innovation to commercial products..

Table 3: Summary of Policy Recommendations for Integrating Digital Innovation and Circular Economy

Policy Area	Recommendation	Supporting Evidence
Government Intervention	Implement strict regulatory frameworks and target setting	
Linkage to Sustainable Development	Develop innovative business models that internalize external costs	
Digital Literacy	Enhance training and curriculum through digital transformation	
Open Innovation & Living Labs	Establish collaborative platforms for stakeholder integration	
Data-Driven Resource Management	Deploy digital monitoring for real-time resource tracking	
Transitional Economy Support	Create funding mechanisms and collaborative research-industry ties	

Explanation:

This yield policy recommendations that are set out strongly with empirical evidence and case studies. The approaches articulated here are intended to enable work on the complementarities that can unlock digital innovation in advancing the circular economy.

5. Conclusions

The convergence of digital innovation and circular economy in HE presents considerable possibilities for resilient, sustainable and globally-competitive learning systems. Singapore provides an example of how policy coherence and institutional synergy can promote such integration and there are lessons here for both developed and developing economies. But there are also big obstacles, in particular in dealing with digital divides and lack of policy coherence.

For policy makers, however, the answer lies in coordinated policies which link digital transformation with sustainability imperatives, buttressed by sufficient funds, the right regulation and stakeholder consultation. The challenge for universities is to make sure CE and digital innovation is situated in their operations on campus to curricula and the culture of the institution itself.

Future research and practice needs to take up empirically based field studies in different regions to establish and evaluate the real impact of integrated policy packages on student learning outcomes, institutional resilience, and societal sustainability. Through the promotion of this agenda, higher education itself can lead the world in showing how innovation and circularity complement one another in creating viable futures.

The digital innovation and circular economy integration within higher education are deemed a generative model of dealing with ecological, economic, and social issues. Drawing on extensive literature review, empirical evidence, and case studies of Singapore and transition economies such as Romania, this paper has established the multifarious contribution HEIs can render to sustainable development.

Key insights from the research include:

Government and Policy Impact:

Government intervention through regulatory frameworks and supportive policies is fundamental to enabling circular economy practices and driving eco-innovation in both industry and higher education67.

Role of Digital Innovation:

Resource management, process optimization and eco-innovation are significantly improved through the implementation of digital technologies. The evidence clearly shows that higher digital uptake results in vastly better circular economy performance.

• Singapore as a Benchmark:

Singapore's integrated approach in managing plastic waste and implementing circular supply chains provides a compelling model for balancing economic and environmental objectives. The city-state's experience highlights the critical interplay between stringent government policies, advanced digital monitoring systems, and proactive educational initiatives

• Opportunities and Challenges in Transitional Economies:

Regarding university entrepreneurial behavior and innovation, the entrepreneurship and innovation performance of universities in transition economies like it is a well-known fact that WUT in Romania have to struggle in linking the research outputs with market

innovations instead. Overcoming structural obstacles and redressing the imbalance between academic research and industry needs is crucial to minimize this risk..

Policy Pathways Forward:

The study proposes policy to emphasise a more active role of government, closer links between CE and sustainable development, greater digital literacy, and further development of open innovation platforms. These routes are essential to reach an ecosystem where digital innovation supports the circular economy and sustainable and resilient higher education systems.

In conclusion, the results of our research highlight the importance of transversal policies that integrate digital innovation and circular economy in the strategic plans of higher education institutions. The Singapore models and case of innovative practices, WUT, in this article, indicate that universities have indeed emerged as significant actors of social change by utilizing digital tools and promoting sustainable behavior. Future work should focus on quantifying empirical effects, developing policy approaches and stimulating cooperation among academia, policymakers and industry to facilitate the shift to a circular digital economy.

Main Findings:

- Government policies are indispensable for setting targets and enabling mechanisms for sustainable practices.
- Digital innovation improves eco-innovation outcomes significantly, with higher regional adoption in urban centers.
- Singapore's policy framework for plastic waste demonstrates how integrated approaches can yield tangible environmental and economic benefits.
- Transitional economies face unique challenges that require collaborative, multi-stakeholder approaches to bridge the innovation gap.
- Higher education institutions must lead in both technological training and sustainable research to build the future workforce equipped to drive change.

This paper has presented a precise academic analysis of the digital innovation and the circular economy approach integration, with the particular focus on education reform and policy implementation. The results support a combined approach where digital instruments, solid policy frameworks and innovative educational practices converge to a sustainable circular future for higher education and society as a whole.

References (APA Style)

- Aivazidou, E., Tsolakis, N., & Mollona, E. (2025). Circular Economy 5.0 on Its Way: A Digital Sustainability Transition. *Academy of Management Perspectives*, (ja), amp-2023. https://doi.org/10.5465/amp.2023.0161
- 2. Allen, J. G., Loo, J., & Campoverde, J. L. L. (2025, January). Governing intelligence: Singapore's evolving Al governance framework. In *Cambridge Forum on Al: Law and governance* (Vol. 1, p. e12). Cambridge University Press. https://doi.org/10.1017/cfl.2024.12
- Al-Thani, G. (2024). Comparative Analysis of Stakeholder Integration in Education Policy Making: Case Studies of Singapore and Finland. Societies, 14(7), 104. https://doi.org/10.3390/soc14070104
- 4. Chen, Z., Awan, U., Nassani, A. A., Al-Aiban, K. M., & Zaman, K. (2025). Enhancing sustainable growth in the global south: The role of mineral resource management, supply chain efficiency, technology advancement, and local downstream processing. *Resources Policy*, 100, 105451., https://doi.org/10.1016/j.resourpol.2024.105451
- Chen, H., Yeboah, S. K., Dawodu, A., Dodoo, J., & Zou, T. (2025). A systematic review of circular economy of artificial lighting and global sustainability. *Energy and Buildings*, 116314., https://doi.org/10.1016/j.enbuild.2025.116314
- Enachescu, V. A., & Costache, B. (2025). EMPOWERING LEARNING THROUGH DIGITAL LEADERSHIP IN EDUCATION. In *INTED2025 Proceedings* (pp. 6814-6821). IATED.
- 7. Espuny, M., Reis, J. S. d. M., Giupponi, E. C. B., Rocha, A. B. T., Costa, A. C. F., Poltronieri, C. F., & Oliveira, O. J. d. (2025). The Role of the Triple Helix Model in Promoting the Circular Economy: Government-Led Integration Strategies and Practical Application. *Recycling*, *10*(2), 50. https://doi.org/10.3390/recycling10020050
- 8. Fortiş, A. E., & Petcu, A. (2022). A Living Lab Approach towards Promoting Innovation. *ENTRENOVA-ENTerprise REsearch InNOVAtion*, 8(1), 169-180, https://doi.org/10.54820/entrenova-2022-0016
- 9. FUJII, T., & RAY, R. Singapore as a sustainable city: Past, present and the future.(2021). *The Singapore economy: Dynamism and inclusion*, 143-192., https://doi.org/10.4324/9780429266584
- 10. Geissdoerfer, M., Savaget, P., Bocken, N., & Hultink, E. (2017). The circular economy A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757–768.
- 11. Gherheş, V., Dragomir, G.-M., Cernicova-Buca, M., & Palea, A. (2024). Enhancing Sustainability in University Campuses: A Study on Solid Waste Generation and Disposal Practices among Students in Politehnica University Timisoara, Romania. *Sustainability*, 16(16), 6866. https://doi.org/10.3390/su16166866
- 12. Ho, O., Iyer-Raniga, U., Sadykova, C., Balasooriya, M., Sylva, K., Dissanayaka, M., ... & Sivapalan, S. (2024). A conceptual model for integrating circular economy in the built environment: An analysis of literature and local-based case studies. *Journal of cleaner production*, *449*, 141516. https://doi.org/10.1016/j.jclepro.2024.141516
- 13. Holmes, W., Bialik, M., & Fadel, C. (2021). *Artificial intelligence in education: Promises and implications for teaching and learning*. Boston: Center for Curriculum Redesign.

- 14. Hunka, A. D., Linder, M., & Habibi, S. (2021). Determinants of consumer demand for circular economy products. A case for reuse and remanufacturing for sustainable development. *Business Strategy and the Environment*, 30(1), 535-550. https://doi.org/10.1002/bse.2636
- 15. Iranmanesh, M., Fayezi, S., Hanim, S., & Hyun, S. S. (2019). Drivers and outcomes of eco-design initiatives: a cross-country study of Malaysia and Australia. *Review of Managerial Science*, *13*(5), 1121-1142., https://doi.org/10.1007/s11846-018-0282-3
- 16. Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: An interdisciplinary exploration. *Journal of Business Ethics*, 140(3), 369–380.
- 17. Noudeng, V., Pheakdey, D. V., Minh, T. T. N., & Xuan, T. D. (2024). Municipal Solid Waste Management in Laos: Comparative Analysis of Environmental Impact, Practices, and Technologies with ASEAN Regions and Japan. *Environments*, *11*(8), 170. https://doi.org/10.3390/environments11080170
- 18. OECD. (2023). *Digital education outlook: Policy perspectives on innovation*. OECD Publishing.
- 19. Ofori, D., & Opoku Mensah, A. (2022). Sustainable electronic waste management among households: a circular economy perspective from a developing economy. *Management of Environmental Quality: An International Journal*, 33(1), 64-85., https://doi.org/10.1108/MEQ-04-2021-008
- Omar, A. M., & Abdullahi, M. O. (2024, November). A bibliometric analysis of sustainable digital transformation in developing countries' higher education. In *Frontiers in Education* (Vol. 9, p. 1441644). Frontiers Media SA., https://doi.org/10.3389/feduc.2024.1441644
- 21. Patrucco, A., Seuring, S., Fosso Wamba, S., Kaliyan, M., & Appolloni, A. (2025). Guest editorial: The missing link between supply chain technologies and sustainability issues: advancing theory and practice. *International Journal of Physical Distribution & Logistics Management*, *55*(3), 177-195. https://doi.org/10.1108/IJPDLM-04-2025-559
- 22. Rogers, D. L. (2000). A paradigm shift: Technology integration for higher education in the new millennium. *AACE Review (Formerly AACE Journal)*, *1*(13), 19-33.
- 23. Rodriguez-Anton, J. M., Rubio-Andrada, L., Celemín-Pedroche, M. S., & Alonso-Almeida, M. D. M. (2019). Analysis of the relations between circular economy and sustainable development goals. *International Journal of Sustainable Development & World Ecology*, 26(8), 708-720. https://doi.org/10.1080/13504509.2019.1666754
- 24. Selwyn, N. (2019). Should robots replace teachers? Al and the future of education. Polity Press
- 25. Shi, R., Wan, X. A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022. *Humanit Soc Sci Commun* 11, 505 (2024). https://doi.org/10.1057/s41599-024-03010-8
- 26. Schumann, C. A., Otto, F., Kling, N., Tittmann, C., & Nitsche, A. M. (2022, June). Digital Ecosystem «University» as Innovation Incubator for Merging Hybrid and Al-Supported Higher Education. In Shaping the Digital Transformation of the Education Ecosystem in Europe. EDEN Digital Learning Europe Proceedings Annual Conference (Tallinn, 20–22 June 2022) (pp. 5-10).

- 27. Skare, M., & Soriano, D. R. (2021). How globalization is changing digital technology adoption: An international perspective. *Journal of Innovation & Knowledge*, *6*(4), 222-233. https://doi.org/10.1016/j.jik.2021.04.001
- 28. Ullah, A., Pinglu, C., Ullah, S., Abbas, H. S. M., & Khan, S. (2021). The role of e-governance in combating COVID-19 and promoting sustainable development: a comparative study of China and Pakistan. *Chinese Political Science Review*, *6*(1), 86-118., https://doi.org/10.1007/s41111-020-00167-w
- 29. UNESCO. (2020). *Education for sustainable development: A roadmap*. UNESCO Publishing.
- 30. Vuk, A., Szűcs, I., & Bauerné Gáthy, A. (2025). Waste management and plastic waste recycling in Japan, China, Singapore and South Korea–What trends can be observed under different regulations. *International Review of Applied Sciences and Engineering*, 16(1), 118-131., https://doi.org/10.1556/1848.2024.00841
- 31. Walmsley, T. G., Ong, B. H., Klemeš, J. J., Tan, R. R., & Varbanov, P. S. (2019). Circular Integration of processes, industries, and economies. *Renewable and sustainable energy reviews*, *107*, 507-515. https://doi.org/10.1016/j.rser.2019.03.039
- 32. Wider, W., Tan, F. P., Tan, Y. P., Lin, J., Fauzi, M. A., Wong, L. S., ... & Hossain, S. F. A. (2024). Service quality (SERVQUAL) model in private higher education institutions: A bibliometric analysis of past, present, and future prospects. *Social Sciences & Humanities Open*, 9, 100805. https://doi.org/10.1016/j.ssaho.2024.100805
- 33. Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. *Learning, Media and Technology*, 45(3), 223–235.
- 34. Wong, C., Wood, J., & Paturi, S. (2021). Managing waste in the smart city of Singapore. In *Tropical Constrained Environments and Sustainable Adaptations: Businesses and Communities* (pp. 225-241). Singapore: Springer Singapore., https://doi.org/10.1007/978-981-33-4631-4 13
- 35. Xavier, L. H., Ottoni, M., & Lepawsky, J. (2021). Circular economy and e-waste management in the Americas: Brazilian and Canadian frameworks. *Journal of Cleaner Production*, 297, 126570., https://doi.org/10.1016/j.jclepro.2021.126570
- 36. Yap, K. S., Leow, Y. J., Chung, S. Y., Loke, C. P. H., Tan, D. Z. L., Yeo, Z., & Low, J. S. C. (2023). Life cycle assessment of plastic waste end-of-life treatments in Singapore. *Procedia CIRP*, *116*, 522-527., https://doi.org/10.1016/j.procir.2023.02.088
- 37. Zhuang, T., Oh, M., & Kimura, K. (2025). Modernizing higher education with industrial forces in Asia: A comparative study of discourse of university-industry collaboration in China, Japan and Singapore. *Asia Pacific Education Review*, 26(1), 195-210., https://doi.org/10.1007/s12564-024-10033-y