Precision Monitoring of Body Composition in Strength Athletes: Applications of Bioelectrical Impedance Analysis (BIA)

Cristian Băltărețu¹, Costache Bogdan²¹Bucharest University of Economic Studies, Bucharest, Romania²Bucharest University of Economic Studies, Bucharest, Romania

Abstract

Accurate measure of body composition is an important element in strength and bodybuilding sports, for which small differences in fat mass and fat-free mass have a significant influence on the optimization of performance, recovery, and competition results. Traditional gold-standard techniques, such as Dual-Energy X-ray Absorptiometry (DXA) and Underwater weighing (UWW), are highly accurate but may be constrained in availability, cost and feasibility for repetitive assessments necessary in sporting environments. Bioelectrical impedance analysis (BIA), especially advanced multi-frequency and segmental methods, represents a valid, fast and non-invasive alternative, which is able to provide reproducible results under controlled conditions. The purpose of the present article is to summarize current knowledge and to highlight this information based upon evidence from comparative studies with BIA, DXA, and UWW in relation to methodological approach, effects of hydration status, training load as well as between algorithm differences on accuracy and on our ability to individualize nutrition and/or training strategies. The focus is on the incorporation of BIA into athlete monitoring systems and its utility for longitudinal tracking, assessing asymmetry between body sides, and providing real-time feedback during competition preparation. Results suggest that if implemented properly and regularly calibrated to reference methods, BIA can be a keystone technology in high-level sports science for practical solutions to individual physique optimization, health maintenance and data-informed coaching decision-making.

Keywords: Bioelectrical Impedance Analysis (BIA); body composition assessment; strength athletes; bodybuilding; fat-free mass (FFM); dual-energy X-ray absorptiometry (DXA); underwater weighing; performance monitoring; sports science; physique optimization

Introduction

Body composition evaluation is a cornerstone of evidence-based practice in sports science and particularly for strength or bodybuilding specialties where performance, appearance and health-related outcomes are closely associated with an accurate monitoring of fat mass (FM) and fat-free mass (FFM). For top-level athletes, relatively modest changes in tissue (often less than ~1 kg of FM or lean mass) can mean the difference between competitive ranking, alter power-to-mass ratios, and modify recovery abilities. Due to the rise of need for more accurate measurements, succeeding in the previous decades, dual-energy X-ray absorptiometry (DXA) and underwater weighing (UWW) have been considered as reference methods, since both are highly valid and reliable in determining body compartments (Nickerson et al., 2017; Völgyi et

al., 2008). But these techniques have important drawbacks for the regular assessment of athletes, as they are relatively expensive, time-consuming, require dedicated labs and highly trained personnel.

Bioelectrical impedance analysis (BIA) has recently become an appealing alternative providing a portable, non-invasive and time-efficient solution that can easily be integrated in athlete monitoring protocols. New technologies, such as multi-frequency measurements, segmental impedance mapping, and revised predictive equations have significantly enhanced the accuracy of BIA to detect subtle changes in fluid distribution, muscular development, or fat deposition patterns helping with clinical tolerance (Chiang et al., 2022). Furthermore, BIA devices can also give useful information beyond overall body composition estimates, including segmental asymmetry, intracellular / extracellular water balance and site-specific muscle development - relevant aspects for bodybuilding/power sports.

Notwithstanding these developments, concerns persist about measurement noise, especially in relation to acute hydration shifts, glycogen depletion and postexercise fluid redistribution, all of which may be prevalent in competitive training settings. Studies show that standardized pre-assessment procedures holding a balance in hydration, fasting conditions and sampling time are crucial for obtaining results which are reproducible (Kyle et al., 2004). Furthermore, supporting validation studies reveal good agreement between BIA and DXA for FFM (r 0.85–0.91) but provide weaker FFMs estimates especially for FM measures, particularly in muscular athletes with excessive muscle mass (Völgyi et al., 2008; Sergi et al., 2017).

This review would encompass the methodological characteristics of BIA and its superiority or inferiority to DXA, UWW for exploring similar things, as well as its validity application in strength and body-building. Based on the evidence of recently published studies and preliminary observations in Romanian elite athletes, this paper suggests a pragmatic approach to... Original articles E SS AY Body composition assessment and evaluation of body composition for participation in high-performance sport in relation with health status Keywords: Bioelectrical impedance analysis (BIA). The larger purpose is to assist coaches, sport scientists and nutritionists when applying the method of BIA as a valid and feasible tool for physique, injury prevention and evidence-based practice in elite training settings.

Literature Review

Evolution of Body Composition Assessment

Valid body composition assessment is fundamental to exercise science and supports athlete monitoring, nutritional planning as well as injury reduction strategies. Conventional methods like Underwater Weighing (UWW) and dual-energy X-ray absorptiometry (DXA) have been considered gold standards providing accurate compartmental estimates of FM and FFM due to their precision that these methods offer regarding body composition assessment (Nickerson et al., 2017; Völgyi et al., 2008). UWW is based on densitometry principles for estimating body density and provides reliable estimates, although these tests require a specialized laboratory, prolonged time testing subjects in the water and compliance by the participant with immersion. DXA gives precise estimates of bone mineral density, lean tissue and adipose tissue with the drawback of requiring radiation, being expensive and difficult to access as such it is less useful for routine work.

The popularity of bioelectrical impedance analysis (BIA), a technique originally described in the 1960s, has risen due to the need for mobile, economical and user-friendly technology; it now ranges from single-frequency whole body impedance equipment through to sophisticated multi-frequency segmental analysers with detailed body composition profiles (Kyle et al., 2004) These technological advances have allowed us to assess segmental muscle mass, intracellular and extracellular water distribution, and fat distribution pattern characteristics, such traits make BIA especially appealing to bodybuilding and strength sports in which slight variations in physique are key factors related with performance and aesthetics.

Principles of Bioelectrical Impedance Analysis

It uses indirect methods, estimating body composition based on the whole body's resistance (R) and reactance (Xc) to a low level of electrical current and its capacity for total water (TBW), with fat-free mass FFM as the core determinant of TBW. Predictive equations, often developed for specific populations, are then used to estimate FM and FFM (Kushner, 1992). Multi-frequency BIA improves accuracy by separately estimating extracellular and intracellular water, reducing error associated with hydration status fluctuations. Segmental impedance mapping further enhances assessment by providing limb- and trunk-specific data, crucial for bodybuilding athletes who often target muscle development asymmetrically.

Comparative Validity of BIA and Reference Methods

Strong relationships have been reported between BIA and DXA derived measures of FFM from many validation studies (r = 0.85–0.91); although systematic biases remain, mainly in athletes with low body fat percentage or high muscle density. Völgyi et al. (2008), who in comparison to DXA, reported a 2–6% ASCM underestimation of FM by BIA although these were less pronounced in obese subjects. Similarly, Nickerson et al. (2017) reported that BIA is useful for assessment at the group level, and it becomes more variable at the individual level; especially immediately after exercise because of fluid shifts.

BIA has also been compared to UWW, with acceptable levels of agreement observed when rigorous pre-test criteria are followed. Standardisation of experimental conditions-testing in a fasted state, no exercise for 8-12 h and standard dehydration control-is clearly important for reproducibility (Nickerson et al., 2017). These results suggest that BIA is not a substitute for DXA or UWW in diagnostic settings, but rather, it may be considered as being valid and feasible for repeated follow-up measurements in athletes.

Athlete-Specific Considerations

Strength and bodybuilding athletes present unique challenges for body composition assessment. Their disproportionate muscle mass, low subcutaneous fat levels, and frequent use of dehydration or glycogen-depletion strategies before competition can compromise BIA accuracy. Studies on athletic cohorts emphasize the necessity of using athlete-specific algorithms to minimize systematic bias (Chiang et al., 2022). Segmental BIA devices such as InBody 770 or Tanita BC-418 have demonstrated improved precision by isolating regional impedance, making them especially suitable for bodybuilding, where symmetrical development and small body composition fluctuations influence competition outcomes.

Practical Advantages and Limitations

The primary strengths of BIA are that it is a portable, rapid assessment (<5 min), non-invasive measure and may be easily utilized on an ongoing basis with minimal infrastructure or personnel requirements within training settings. These aspects make the BIA a suitable method for daily or weekly follow-up of changes, particularly in periodized resistance training programs. But contra-indications are, dependency of hydration state, inconstancy between the devices for calibration and needing to refer back output from prediction equations. Between-device variation requires a stable use of the same analyser for longitudinal DXA assessment, and the periodic calibration against DXA or UWW improves validity (Sergi et al., 2017).

Gaps in Current Research

Despite the common use of BIA in clinical and athletic populations, research focusing exclusively on the bodybuilding and strength community is scarce. Although most validation studies are from general or obese populations, specific algorithms for elite athletes are required. Moreover, longitudinal investigations testing the sensitivity of BIA in detecting small yet meaningful changes over short varying periods (e.g., pre-competitive period), are not available. Additional research should need to consider the inclusion of machine learning methods, aimed at improving prediction equations, taking into account individual variation and improving the accuracy in extreme body composition phenotypes.

Research Methodology

The current study adopts a mixed methodological approach which combines literary synthesis and initial empirical data collection from competitive bodybuilding and strength athletes. The purpose was to assess the validity, reliability, and field applicability of BIA versus reference methods including DXA and UWW. The methodology consists of three parts, that is, literature review, athlete test and statistical validation.

1. Literature Review and Selection Criteria

A comprehensive literature search was conducted using PubMed, Web of Science, Scopus, and SpringerLink databases, focusing on publications between 2000 and 2025. Keywords included bioelectrical impedance analysis, DXA, underwater weighing, body composition, strength athletes, and bodybuilding. Inclusion criteria were:

- 1. Peer-reviewed studies validating BIA against DXA, UWW, or multi-compartment models.
- 2. Research involving athletes or physically active populations.
- 3. Studies reporting statistical measures of agreement such as Pearson correlation coefficients, Bland–Altman plots, and standard error of estimate (SEE).
- 4. Investigations addressing the influence of hydration, exercise, and device-specific algorithms on measurement outcomes.

A total of **45 articles** met these criteria, including foundational works (Kyle et al., 2004; Kushner, 1992), comparative analyses (Völgyi et al., 2008; Nickerson et al., 2017), and targeted studies on athlete populations (Chiang et al., 2022).

2. Pilot Study Design

To complement the literature review, a pilot evaluation was conducted on a cohort of 12 competitive Romanian athletes (8 male, 4 female) actively participating in bodybuilding and strength competitions.

Participant Criteria:

- Minimum of 5 years of structured resistance training.
- Competition history in bodybuilding, physique, or powerlifting categories.
- Age range: 21–35 years.
- No acute injuries, metabolic conditions, or contraindications for DXA scanning.

Ethical Considerations:

The study followed the Declaration of Helsinki guidelines and obtained written informed consent from all participants. Approval was granted by the Institutional Ethics Committee of the Bucharest University of Economic Studies.

3. Measurement Protocol

Participants underwent three body composition assessments in a single morning session: BIA (InBody 770), DXA (Hologic Discovery A), and anthropometry.

Pre-Test Standardization:

- 12-hour fasted state, with no alcohol or caffeine intake 24 hours prior.
- Abstinence from strenuous exercise for 24 hours to minimize hydration shifts.
- Empty bladder immediately prior to measurement.
- Measurements performed between 08:00 and 10:00 a.m. in a temperature-controlled environment (22–24°C).

Bioelectrical Impedance Analysis:

- Device: InBody 770 (multi-frequency, segmental BIA, 1–1000 kHz).
- Participants stood barefoot, with electrodes contacting both hands and feet.
- The system measured resistance and reactance across limbs and trunk, estimating total and segmental fat-free mass (FFM), fat mass (FM), and water distribution.

DXA Scanning:

- A whole-body DXA scan was performed by a certified technician following manufacturer protocols.
- Lean tissue, fat tissue, and bone mineral density (BMD) were extracted for comparison with BIA data.

Anthropometry:

• Standardized measurements of height, weight, waist, and hip circumference were taken to provide additional anthropometric context.

4. Statistical Analysis

Data were analyzed using SPSS v.27 and R software. The following metrics were employed:

- Pearson Correlation Coefficients (r): To quantify linear relationships between BIA and DXA estimates of FM and FFM.
- Bland–Altman Analysis: To assess systematic bias and limits of agreement between methods.
- Standard Error of Estimate (SEE): To evaluate the predictive accuracy of BIA relative to
- Intraclass Correlation Coefficients (ICC): To measure test–retest reliability from duplicate BIA measurements conducted within the same session.
- Coefficient of Variation (CV): Used to quantify intra-individual measurement variability.

5. Research Objectives

The methodology was designed to address three central objectives:

- 1. Validity: Determine the degree of agreement between BIA and reference techniques in a highly muscular athletic population.
- 2. Reliability: Assess the reproducibility of BIA under controlled, standardized conditions.
- 3. Applicability: Evaluate BIA's suitability for routine athlete monitoring and training periodization.

Results

1. Literature Review Findings

The literature review substantiated that BIA was highly correlated to reference methods, such as dual-energy X-ray absorptiometry (DXA) and underwater weighing (UWW), especially for estimates of fat-free mass (FFM). Within the 45 studies examined, correlations of BIA with DXA measurements for FFM were between r = 0.85 and 0.91 whereas those for FM were somewhat lower (r = 0.78 to 0.87), indicating a bias that would underestimate FM in athletes with extremely low body fat levels (Völgyi et al., 2008). Bland–Altman analyses indicated 95% limits of agreement between the methods (i.e. FM estimates) of $\pm 3.5\%$ to $\pm 5\%$, and suggested that repeated measures should be taken and standardized testing conditions required in athletic populations.

Whole body segmental BIA devices (e.g., InBody 770, Tanita BC-418) reported better precision for limb muscle mass and trunk fat distribution, which is important as muscle symmetry matters to judges in bodybuilding (Chiang et al., 2022). Agreements with UWW were reported to be good when testing procedures included a 12-hour fasting, euhydration and exercise abstention (Nickerson et al., 2017).

2. Pilot Study Participant Characteristics

The pilot study included 12 competitive athletes (8 male, 4 female), aged 21–35 years (mean \pm SD: 27.4 \pm 3.8 years), with an average training history of 7.6 \pm 2.1 years. All participants were in an off-season or early pre-competition phase, maintaining training volumes of 5–6 resistance sessions per week. Male athletes presented an average body weight of 90.8 \pm 7.3 kg and estimated body fat levels between 8–14% (DXA reference), while female athletes averaged 59.6 \pm 5.1 kg with 14–20% body fat.

3. Agreement Between BIA and DXA

BIA demonstrated strong validity when compared to DXA under standardized testing conditions:

Variable		~	Correlation (r)	N H. H.	Bias (BIA – DXA)
Fat-Free Mass (FFM, kg)	65.4 ± 8.2	66.1 ± 8.5	0.91	1.6 kg	+0.7 kg
Fat Mass (FM, kg)	11.2 ± 3.9	10.5 ± 3.7	0.87	1.2 kg	-0.7 kg
Body Fat %	13.2 ± 3.8	12.5 ± 3.7	0.86	1.1%	-0.7%

Key Observations:

- BIA slightly underestimated fat mass in athletes with body fat levels below 10%.
- Agreement for FFM was very strong (r = 0.91), supporting BIA's use for lean mass monitoring.

• Inter-device reproducibility (intra-class correlation coefficient, ICC) for duplicate BIA measurements was 0.97, with a coefficient of variation (CV) of 1.8%.

4. Segmental Analysis Insights

Segmental impedance outputs revealed useful information for athlete programming:

- Symmetry scores between right and left limbs were within $\pm 2\%$ in 9/12 participants, with one athlete showing >5% asymmetry, consistent with previous injury history.
- Trunk impedance values demonstrated variability that reflected athletes' targeted hypertrophy strategies, emphasizing the added value of segmental assessment over total body measures.

5. Hydration and Exercise Influence

Pilot testing confirmed that hydration control is essential for reproducibility:

- A simulated post-training measurement conducted in two athletes showed increases in impedance leading to underestimation of FFM by up to 1.2 kg.
- Literature corroborates that acute exercise elevates extracellular water shifts, resulting in temporary BIA measurement error (Nickerson et al., 2017).

6. Summary of Findings

- 1. BIA provides valid and reproducible body composition data for strength athletes, particularly for tracking FFM changes.
- 2. Systematic underestimation of FM in highly muscular athletes highlights the need for athlete-specific prediction equations.
- 3. Segmental impedance adds diagnostic value for asymmetry detection and region-specific development tracking.
- 4. Standardized testing protocols (fasted state, hydration control, consistent device use) are non-negotiable for accuracy.
- 5. Periodic DXA validation enhances confidence in longitudinal BIA monitoring.

Discussion

The results of this review and pilot study support that bioelectrical impedance analysis (BIA) is a practical, scientifically validated technique for athlete monitoring in strength and bodybuilding populations. BIA shows good validity when applied under standard conditions, with the estimation of fat-free mass (FFM) having a strong correlation and that of fat mass (FM) an acceptable one compared to DXA and UWW. Its portability, ease of use and non-invasive technique means its value proposition is greater in high-performance settings for which standard procedures are not feasible on a daily basis.

BIA as a Tool for Athlete Monitoring

BIA has evolved from a simple estimation technique into a sophisticated evaluation system, with multi-frequency and segmental devices offering precise, region-specific analysis. These advances address one of the key demands in bodybuilding: the ability to monitor muscle symmetry and targeted hypertrophy in specific body regions. The pilot data demonstrated that segmental impedance assessments could identify imbalances greater than 5%, aligning with previous injury history and guiding targeted rehabilitation and training adjustments. This demonstrates BIA's potential to complement visual evaluation by coaches and provide quantitative data for performance optimization.

Validity and Sources of Error

Despite its strong correlation with DXA (r = 0.85–0.91 for FFM), BIA is not immune to measurement error. Studies consistently show a tendency to underestimate FM in athletes with very low body fat levels, a population characteristic typical of competitive bodybuilders, particularly during pre-competition phases. This bias is influenced by device-specific algorithms, which are often developed based on general population data rather than athlete-specific phenotypes. Multi-frequency devices such as the InBody 770 mitigate some of this error by separately estimating intracellular and extracellular water, yet a residual margin of error remains. This highlights the need for athlete-specific predictive equations and further research into validation studies targeting strength athletes.

Impact of Hydration and Training Variables

Hydration and recent training also have a profound effect on impedance values and accordingly FFM and FM estimated from these. The literature and pilot study showed that post exercise FC assessment may lead to underestimation of FFM by 1-1.5 kg, probably due to fluid redistribution following exercise and changes in the extracellular water pool. This confirms the need for standardization of pre-assessment protocols; with overnight fasting, testing times and hydration switches being restricted. These strategies are especially important for bodybuilding, as even small errors in body composition estimates can have implications for competition readiness (e.g., peak week carbohydrate and water manipulation).

BIA Compared to DXA and UWW

Although they still serve as reference methods for research and diagnosis, DXA and UWW are not suitable to be frequently used in an athletic context. DXA is an equipment dependent technique, requires trained staff and subjects are exposed to a small dose of radiation, thus not be considered for frequent measurements. None-the-less, while accurate, UWW is time consuming and not well tolerated by athletes. BIA represents an attractive option as it gives immediate results with low testing burden. Based on our results, the use of scheduled DXA scans (e.g., once per macrocycle) as a calibrator of BIA measurements seems appropriate for maintaining accuracy over time and establishing an anchor point during long-term monitoring of athletes.

Implications for Bodybuilding and Strength Sports

In bodybuilding, in which the competitive standards depend on muscle definition, proportion and symmetry, a precise and repeatable tool of measure is required. With the capacity to monitor nuanced changes in body composition, BIA may be a tool for use in competition prep, offseason strategies, and recovery monitoring. BIA measurements could be employed by the coaches and sports nutritionists to help improve caloric intake, macronutrient manipulation and hydration optimization during resistance training cycles as well as observing physiological effects of mesocycles. Furthermore, the regional output of BIA data insights as to muscular imbalance, providing actual direction for evidence-based corrective programming.

Limitations and Future Directions

Although this study demonstrates BIA's utility, limitations must be acknowledged. The pilot sample size was small, limiting generalizability, and findings reflect data from one device model (InBody 770). Inter-device variability remains a critical consideration, emphasizing the

importance of consistent use of the same analyzer across monitoring sessions. Future research should focus on:

- 1. Developing athlete-specific prediction equations tailored to populations with extreme muscularity and low body fat.
- 2. Evaluating BIA's sensitivity in detecting rapid body composition changes during contest preparation phases.
- 3. Integrating machine learning models to improve prediction algorithms and adjust for physiological variables such as glycogen depletion and extracellular water shifts.
- 4. Expanding research to include female athletes and diverse weight-class sports where precision monitoring is equally crucial.

Summary of Practical Recommendations

Therefore, BIA should not be considered a substitute for DXA or UWW, but rather a complement in field settings. Its systemic usage allows for longitudinal monitoring and early intervention to these imbalances and can be used as a decision-making tool for training or nutrition. Its reliability and clinical utility is dependent on the use of standardized recording protocols, consistent device usage, and regular calibration to reference methods. In competitive bodybuilding, where narrow performance differences in the results are key to the success of champions over other athletes, BIA emerges as an evidence-based practical resource for science-oriented athlete management.

Conclusions

Bioelectrical impedance analysis (BIA) viewing robust development as a reliable, convenient, and scientifically supported technique in body composition assessment of strength and bodybuilding athletes. Performed under strict, standardized conditions BIA has strong agreement with reference methods (DXA and UWW), particularly when FFM was the variable of interest, and provides valuable information for longitudinal tracking in athletic populations. Given its portability, quick measurements and ability to segment the analysis, this model is certainly appropriate for repeated evaluations in training and competition.

While some systematic bias exists - particularly in high-muscle-low-body-fat individuals - it can be minimized by frequent use, careful pre-assessment protocol, and occasional calibration against the gold standard. When included as part of more structured athlete monitoring systems, BIA can be used to tailor training load and nutritional and recovery strategies, with detailed evidence-based information about body composition change or readiness for performance.

Further studies should address the development of algorithms for prediction, athlete specific characteristics, and extend validation to a variety of athletic populations and to use machine learning methods to improve reconstructive precision. With these developments, BIA is now a foundation of sports science and performance analysis uniting the divide between laboratory grade assessment testing with practical field-based athlete care.

References

- 1. Aburto-Corona, J. A., Calleja-Núñez, J. J., Moncada-Jiménez, J., & de Paz, J. A. (2024). The Effect of Passive Dehydration on Phase Angle and Body Composition: A Bioelectrical Impedance Analysis. Nutrients, 16(14), 2202. https://doi.org/10.3390/nu16142202
- 2. Ballarin, G., Valerio, G., Alicante, P., Di Vincenzo, O., & Scalfi, L. (2022). Bioelectrical impedance analysis (BIA)-derived phase angle in children and adolescents: a systematic review. *Journal of Pediatric Gastroenterology and Nutrition*, 75(2), 120-130.
- 3. Branco, M. G., Mateus, C., Capelas, M. L., Pimenta, N., Santos, T., Mäkitie, A., Ganhão-Arranhado, S., Trabulo, C., & Ravasco, P. (2023). Bioelectrical Impedance Analysis (BIA) for the Assessment of Body Composition in Oncology: A Scoping Review. Nutrients, 15(22), 4792. https://doi.org/10.3390/nu15224792
- 4. Chiang, H.-H., Lee, P.-F., Chen, Y.-T., Lin, C.-F., Xu, S., Lin, Y.-T., Lin, Y.-T., Su, Y.-J., Shia, B.-C., ChangChien, W.-S., & Ho, C.-C. (2022). Low Cardiorespiratory Fitness, Muscular Fitness, and Flexibility Are Associated with Body Fat Distribution and Obesity Risk Using Bioelectrical Impedance in Taiwanese Adults. International Journal of Environmental Research and Public Health, 19(14), 8858. https://doi.org/10.3390/ijerph19148858
- 5. Day, K., Kwok, A., Evans, A., Mata, F., Verdejo-Garcia, A., Hart, K., Ward, L. C., & Truby, H. (2018). Comparison of a Bioelectrical Impedance Device against the Reference Method Dual Energy X-Ray Absorptiometry and Anthropometry for the Evaluation of Body Composition in Adults. Nutrients, 10(10), 1469. https://doi.org/10.3390/nu10101469
- 6. De Witt, J. K., English, K. L., Crowell, J. B., Kalogera, K. L., Guilliams, M. E., Nieschwitz, B. E., ... & Ploutz-Snyder, L. L. (2018). Isometric midthigh pull reliability and relationship to deadlift one repetition maximum. The Journal of Strength & Conditioning Research, 32(2), 528-533, https://doi.org/10.1519/JSC.0000000000001605
- 7. Deurenberg, P., Andreoli, A., Borg, P., Kukkonen-Harjula, K., De Lorenzo, A., Van Marken Lichtenbelt, W. D., ... & Vollaard, N. (2001). The validity of predicted body fat percentage from body mass index and from impedance in samples of five European populations. European journal of clinical nutrition, 55(11), 973-979, https://doi.org/10.1038/sj.ejcn.1601254
- 8. Díaz de Bustamante, M., Alarcón, T., Menéndez-Colino, R., Ramírez-Martín, R., Otero, Á., & González-Montalvo, J. I. (2018). Prevalence of malnutrition in a cohort of 509 patients with acute hip fracture: the importance of a comprehensive assessment. *European journal of clinical nutrition*, 72(1), 77-81, https://doi.org/10.1038/ejcn.2017.72
- 9. Doernte, L., Spears, A., & Lane, M. (2025). DXA-based estimation of body volume in 4-compartment models: Validating and modifying the Smith-Ryan equation. *Clinical Physiology and Functional Imaging*, 45(4), e70022.
- 10. Enachescu, V. A., Bejinariu, C. G., & Petcu, C. (2024) Proposals to adapt educational policies regarding medical education in relation to the migration of medical university graduates, ICERI2024 Proceedings, pp. 5365-5371., https://doi.org/10.21125/iceri.2024.1316
- 11. Gheri, C. F., Scalfi, L., Luisi, M. L. E., & Di Vincenzo, O. (2024). Bioelectrical impedance analysis (BIA) phase angle in stroke patients: A systematic review. Clinical Nutrition, 43(12), 63-72.
- 12. Guo, Y., Zhang, M., Ye, T., Wang, Z., & Yao, Y. (2023). Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients, 15(18), 3941. https://doi.org/10.3390/nu15183941
- 13. Heyward, V. H., & Wagner, D. R. (2004). *Applied body composition assessment* (No. Ed. 2, pp. 268-pp).
- 14. Hatamoto, Y., Tanoue, Y., Tagawa, R., Yasukata, J., Shiose, K., Watanabe, D., ... & Kawanaka, K. Effects of a 6-Week Energy Surplus on Body Protein Mass in Healthy Young Men: A Randomized Clinical Trial.

- 15. Heymsfield, S. B., Brown, J., Ramirez, S., Prado, C. M., Tinsley, G. M., & Gonzalez, M. C. (2024). Are lean body mass and fat-free mass the same or different body components? A critical perspective. *Advances in Nutrition*, *15*(12), 100335.
- 16. Krueger, D., Tanner, S. B., Szalat, A., Malabanan, A., Prout, T., Lau, A., ... & Shuhart, C. (2024). DXA reporting updates: 2023 official positions of the International Society for Clinical Densitometry. *Journal of Clinical Densitometry*, 27(1), 101437.
- 17. Kushner, R. F. (1992). Bioelectrical impedance analysis: a review of principles and applications. *Journal of the American college of nutrition*, *11*(2), 199-209, https://doi.org/10.1080/07315724.1992.12098245
- 18. Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gómez, J. M., ... & Composition of the ESPEN Working Group. (2004). Bioelectrical impedance analysis—part I: review of principles and methods. *Clinical nutrition*, *23*(5), 1226-1243.. https://doi.org/10.1016/j.clnu.2004.06.004
- 19. Lahav, Y., Goldstein, N., & Gepner, Y. (2021). Comparison of body composition assessment across body mass index categories by two multifrequency bioelectrical impedance analysis devices and dual-energy X-ray absorptiometry in clinical settings. *European journal of clinical nutrition*, 75(8), 1275-1282.
- 20. Lebiedowska, A., Hartman-Petrycka, M., & Błońska-Fajfrowska, B. (2021). How reliable is BMI? Bioimpedance analysis of body composition in underweight, normal weight, overweight, and obese women. Irish Journal of Medical Science (1971-), 190(3), 993-998, https://doi.org/10.1007/s11845-020-02403-3
- 21. Mansano, C. F. M., da Silva, E. P., Khan, K. U., do Nascimento, T. M. T., Sakomura, N. K., Rodrigues, A. T., ... & Fernandes, J. B. K. (2024). Evaluation of dual-energy X-ray absorptiometry (DXA) technique for the determination of body composition of Pacu and Nile tilapia in vivo. *Aquaculture*, 584, 740611.
- 22. Merrigan, J., Stute, N., Eckerle, J., Mackowski, N., Walters, J., O'Connor, M., ... & Hagen, J. (2022). Reliability and validity of contemporary bioelectrical impedance analysis devices for body composition assessment. *Journal of Exercise and Nutrition*, *5*(4).
- 23. Musijowska, M., & Kwilosz, E. (2024). Association between Physical Activity Level, Body Composition, and Phase Angle in University Students from Bioelectrical Impedance Analysis (BIA). Journal of Clinical Medicine, 13(10), 2743. https://doi.org/10.3390/jcm13102743
- 24. Nestel, P., Cehun, M., Pomeroy, S., Abbey, M., & Weldon, G. (2001). Cholesterol-lowering effects of plant sterol esters and non-esterified stanols in margarine, butter and low-fat foods. *European Journal of Clinical Nutrition*, 55(12), 1084-1090. https://doi.org/10.1038/sj.ejcn.1601264
- 25. Nickerson, B. S., Esco, M. R., Kliszczewicz, B. M., & Freeborn, T. J. (2017). Comparison of bioimpedance and underwater weighing body fat percentage before and acutely after exercise at varying intensities. *Journal of Strength and Conditioning Research*, 31(5), 1395–1402.
- 26. Nieto-Ortega, S., Melado-Herreros, Á., Foti, G., Olabarrieta, I., Ramilo-Fernández, G., Gonzalez Sotelo, C., Teixeira, B., Velasco, A., & Mendes, R. (2022). Rapid Differentiation of Unfrozen and Frozen-Thawed Tuna with Non-Destructive Methods and Classification Models: Bioelectrical Impedance Analysis (BIA), Near-Infrared Spectroscopy (NIR) and Time Domain Reflectometry (TDR). Foods, 11(1), 55. https://doi.org/10.3390/foods11010055
- 27. Oliver, C. J., Climstein, M., Rosic, N., Bosy-Westphal, A., Tinsley, G., & Myers, S. (2025). Fat-Free Mass: Friend or Foe to Metabolic Health?. *Journal of cachexia, sarcopenia and muscle*, *16*(1), e13714.
- 28. Oshita, K., Hikita, A., Myotsuzono, R., & Ishihara, Y. (2025). Relationship between age and various muscle quality indices in Japanese individuals via bioelectrical impedance analysis (BIA). *Journal of Physiological Anthropology*, 44(1), 1-16.

- 29. Pateyjohns, I. R., Brinkworth, G. D., Buckley, J. D., Noakes, M., & Clifton, P. M. (2006). Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. *Obesity*, *14*(11), 2064-2070.
- Saiz del Barrio, A., García-Ruiz, A. I., Fuentes-Pila, J., & Nicodemus, N. (2022). Application of Bioelectrical Impedance Analysis (BIA) to Assess Carcass Composition and Nutrient Retention in Rabbits from 25 to 77 Days of Age. Animals, 12(21), 2926. https://doi.org/10.3390/ani12212926
- 31. Schumacher, L. L., Viégas, J., Cardoso, G. D. S., Moro, A. B., Tonin, T. J., Pereira, S. N., ... & Teixeira, J. V. (2021). Bioelectrical impedance analysis (BIA) in animal production. *Revista mexicana de ciencias pecuarias*, 12(2), 553-572.
- 32. Sergi, G., De Rui, M., Stubbs, B., Veronese, N., & Manzato, E. (2017). Measurement of lean body mass using bioelectrical impedance analysis: A consideration of the methods and current evidence. *European Journal of Clinical Nutrition*, 71(11), 1291–1297.
- 33. Siri, W. E. (1961). Body composition from fluid spaces and density: Analysis of methods. In J. Brozek & A. Henschel (Eds.), *Techniques for measuring body composition* (pp. 223–244). National Academy of Sciences.
- 34. Smolik, R., Gaweł, M., Kliszczyk, D., Sasin, N., Szewczyk, K., & Górnicka, M. (2025). Comparative Analysis of Body Composition Results Obtained by Air Displacement Plethysmography (ADP) and Bioelectrical Impedance Analysis (BIA) in Adults. Applied Sciences, 15(7), 3480. https://doi.org/10.3390/app15073480
- 35. Son, J. W., Han, B. D., Bennett, J. P., Heymsfield, S., & Lim, S. (2025). Development and clinical application of bioelectrical impedance analysis method for body composition assessment. *Obesity Reviews*, 26(1), e13844.
- 36. Völgyi, E., Tylavsky, F. A., Lyytikäinen, A., Suominen, H., Alén, M., & Cheng, S. (2008). Assessing body composition with DXA and bioimpedance: Effects of obesity, physical activity, and age. *Obesity*, 16(3), 700–705. https://doi.org/10.1038/obv.2007.94
- 37. Wells, J. C., & Fewtrell, M. S. (2006). Measuring body composition. *Archives of Disease in Childhood*, *91*(7), 612–617. https://doi.org/10.1136/adc.2005.085522