Exploring Integration of 4IR Technologies in Nigerian Universities: Implications for Pedagogy and Skills Development

Olukayode Solomon Aboderin Adekunle Ajasin University, Akungba-Akoko, Niger

Abstract

The Fourth Industrial Revolution (4IR) is reshaping education around the world. It presents innovations such as artificial intelligence (AI), robotics, the Internet of things (IoT) and big data. Such resources are also being implemented in several educational systems. But Nigerian universities have been slow in adopting them to train students for skills. In this conceptual paper, we discuss the ways in which 4IR technologies (and particularly AI) are being employed within Nigerian higher education. It investigates quality and potential to support teaching and learning of future-ready skills. The TPACK and UTAUT models are used in the paper to evaluate technology use. The results indicate that it is too soon to say if these tools are being used to teach well, serving local needs or showing clear gains. The study follows a conceptual and interpretive approach. It is based on a narrative review of academic literature, policy documents and theoretical works. The sources were retrieved from Scopus, the Web of Science, and Google Scholar. The thematic analysis identified obstacles at three levels: national (absence of policy and finance), institutional (infrastructure and planning) and personal (digital skills, resistance). The paper ends with concluding remarks. This includes building local strategies to embrace the 4IR, training teachers in digital approaches, and upgrading infrastructure for skills development in Nigerian universities.

Keywords: 4IR, Artificial Intelligence (AI), Nigerian Higher Education, Skills Development, TPACK Model, UTAUT Model

1. Introduction

The emerging technologies, including artificial intelligence (AI), robotics, Internet of Things (IoT) and big data that underpin the fourth industrial revolution (4IR) are transforming global educational systems (Cowin, 2021). These technologies have the potential to alter the fabric of education by automating tasks, providing personalised instruction or contributing to data-informed decision making (Zawacki-Richter et al., 2019; Holmes et al., 2021). A number of countries are actively integrating 4IR tools into their educational system. Flourishing as these innovations are, Nigerian universities have been very slow in realigning them in manners that would translate to skills development of the 21st century.

Adaptive learning environments, intelligent tutoring systems and predictive analytics are the popular applications for its use. But its adoption in higher education in sub-Saharan Africa is low and uncoordinated (Adedoyin & Soykan, 2020). In Nigeria, 4IR technologies such as AI are being resisted at different levels. At national level poor policy and lack of funding are obstacles to progress. Structurally, an absence of infrastructure and poor strategic planning obstruct the successful enforcement. At the individual level, the low proficiency with digital technology and resistance to change from both academics and students also make implementations challenging.

This study assesses the challenge of disparity between potential and actual AI implementation in Nigerian higher education context. It utilises two constructs - the TPACK model and UTAUT. Our argument is that TPACK has a pedagogical-content focus and that UTAUT has an organizational-attitudinal-behavioral focus. Combined, these models present a broad view through which to analyze pedagogical coherence and the capacity for change in Nigerian universities.

The present study critically analysed the state of AI integration within academic institutions of higher education in Nigeria and its possible effects on future-ready skills. This is to determine constraints and enablers that are based on cognitive learning, as well as to offer recommendations for deploying 4IR technologies in teaching and learning.

2. Literature Review

The Fourth Industrial Revolution in Higher Education

These technologies blur the boundaries between physical, digital, and biological systems (Schwab, 2016). Key innovations include artificial intelligence (AI), robotics, the Internet of Things (IoT), blockchain, cloud computing, and augmented reality. These tools are rapidly changing how knowledge is created, shared, and applied. In higher education, 4IR calls for a major shift in thinking. It challenges existing pedagogical approaches, institutional structures, and the role of universities. Graduates must be prepared for a future shaped by technological disruption. This shift is not only technological, it is also philosophical. Educators must rethink the nature of teaching, learning, and assessment in a world increasingly influenced by intelligent machines.

Globally, universities are responding to these changes. They are embedding digital technologies into curricula. Many are adopting innovative teaching models such as blended and flipped learning. Interdisciplinary research is also growing to address complex societal challenges (Zawacki-Richter et al., 2019). These changes show that traditional methods,like rote learning and passive reception, are no longer enough. Today's learners need higher-order thinking, adaptability, and lifelong learning skills to thrive in the digital economy.

Student-centered, inquiry-driven, and technology-supported learning models are replacing conventional approaches (Gleason, 2018). However, in Africa, and especially in Nigeria, the integration of 4IR technologies in higher education is uneven. Some efforts to digitalize education and promote STEM are promising. Yet progress is slowed by infrastructural deficits, policy gaps, and digital divides (Dunmade et al., 2023). These issues reflect deeper systemic problems, such as underinvestment in education and a lack of strategic vision.

Despite these challenges, reform is urgently needed. Nigerian universities must evolve to stay globally competitive and locally relevant. Integrating 4IR technologies can expand access to quality education. It can also personalize learning and foster innovation. AI, for example, is used globally for intelligent tutoring, automating administrative tasks, and supporting data-informed decision-making (Holmes et al., 2021). Other technologies like virtual and augmented reality, enhance experiential learning. Blockchain supports secure credentialing. Big data analytics help track learners and predict outcomes (OECD, 2021). To guide effective

integration of AI into Nigerian university curricula, this paper applies the TPACK framework. TPACK helps educators balance technology, pedagogy, and subject content. It offers a way to embed AI meaningfully into teaching practices that support 21st-century skills.

The paper also uses the UTAUT. UTAUT explores behavioral and institutional factors that affect technology adoption. The model includes four key constructs: performance expectancy, effort expectancy, social influence, and facilitating conditions (Venkatesh et al., 2003). Performance expectancy refers to the perceived benefits of using AI, such as personalized learning and improved administrative efficiency. AI tools like intelligent tutoring systems and predictive analytics have shown promise in enhancing learning outcomes and streamlining educational processes (Holmes et al., 2021). Effort expectancy relates to how easy the technology is to use. In Nigeria, low digital literacy among faculty and students presents a major challenge to adoption. Many educators lack the training and confidence to use AI tools effectively, which hinders integration (Adedovin & Soykan, 2020). Social influence is shaped by institutional culture and leadership. Nigerian universities often operate within hierarchical structures that discourage experimentation and innovation. Leadership support and peer influence are critical in shaping attitudes toward technology use (Mhlanga, 2021). Facilitating conditions include infrastructure, funding, and policy support. Many Nigerian institutions face serious limitations in these areas, including unreliable internet access, inadequate hardware, and weak regulatory frameworks. These factors significantly affect the capacity to adopt and sustain AI technologies (Dunmade et al., 2023). By using the UTAUT model, this paper explores how these factors affect the acceptance and use of AI. It highlights the link between individual attitudes and institutional readiness. This helps explain the gap between the potential of AI and its actual use in Nigerian higher education.

Successful implementation in Nigeria must be context-sensitive. Technology adoption should reflect local needs, values, and capacities. This means shifting from rigid institutional cultures to flexible, innovation-driven models. Such models encourage experimentation, collaboration, and risk-taking. Curriculum reform is essential. Digital literacy, computational thinking, and ethical reasoning should be taught across all subjects, not just in computer science. Faculty development is also critical. Educators need digital teaching skills to overcome resistance and technophobia. Without a well-trained academic workforce, 4IR implementation could worsen inequalities. Ethical concerns must be addressed. These include privacy, surveillance, and algorithmic bias. In African contexts, issues like data ownership and fairness are especially important (Mhlanga, 2021). Addressing these concerns is vital to ensure that 4IR technologies lead to inclusive and equitable education.

In conclusion, 4IR offers Nigerian higher education a chance to leapfrog traditional development paths. It enables meaningful participation in the global knowledge economy. By using frameworks like TPACK and UTAUT, universities can embrace technology as a driver of pedagogical, institutional, and societal innovation. This transformation must be intentional, inclusive, and rooted in local realities.

3. Methodology

This study adopts a conceptual and interpretive research design to examine how 4IR technologies, particularly AI application in Nigerian higher education. This is fitting for a

study that seeks theoretical contributions and critical dialogue with knowledge – rather than new empirical material. Interpretive research has particular value in examining pedagogic and institutional dimensions to adoption of AI (Cohen et al., 2017; Coe et al., 2017) A narrative literature review was also carried out to synthesize published peer reviewed papers, reports of international organizations and Nigerian Resources in the relation to 4IR integration. These were peer-reviewed, international organization and Nigerian policy documents. Purposive sampling technique was used to select relevant literature from Scopus, Web of Science and Google Scholar with bias for African and Nigerian context. Thematic synthesis and contextuality depth were achieved through this method, as these approaches provided insights on the complexity of education in digitally transformed context (Usman et al., 2025). The methodology is theoretically and contextually relevant to the Nigerian educational sector.

Theoretical Framework

The paper makes good use of two long-standing theoretical models: the Technological Pedagogical Content Knowledge (Mishra & Koehler, 2006) and the Unified Theory of Acceptance and Use of Technology. TPACK offers a strong framework for investigating ways in which technology can be integrated into pedagogy and content. It focuses on the tension and relationships between tools, pedagogy, and subject-related content. UTAUT supports this in its consideration of behavioural and organizational influences on adoption which include perceived usefulness, ease of use, and facilitating conditions. The compatibility between the TPACK and UTAUT frameworks is good. Two, TPACK is predominantly concerned with the interplay of technology, pedagogy and content knowledge in teaching. UTAUT is about why people and organizations adopt and use new technologies. All together, these models can provide a complete picture of teaching practices and institutional readiness for AI to researchers. This is appropriate to be used in the present study, as it fits into the Nigerian higher education. Tock can be used to judge how well Ai fits into teaching methods and subject areas. UTAUT can clarify why educators and their institutions might embrace or reject AI tools. They offer a solid basis for analyzing AI integration at instructional and organizational levels.

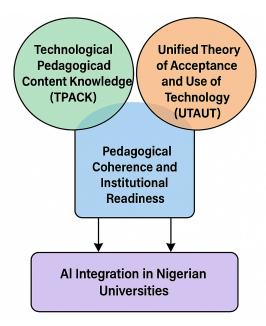


Fig1. Theoretical

Framework illustrating the integration of TPACK and UTAUT models for AI adoption in Nigerian higher education

3. Results

By employing technologies of the Fourth Industrial Revolution (4IR) such as Artificial Intelligence (AI), teaching and learning could be transformed. In contrast, Nigerian universities have been sluggish in adopting such technological advancements. They are also weak in cultivating the capabilities of the 21st century. But adoption has been sluggish because of issues at multiple levels. At the national level, there is no policy support or much in funding. At the institutional level, lack of adequate infrastructures and ineffective strategic planning serves as barriers. At the micro level, faculties and students are confronted by low digital literacy rates and resistance to change. The technology integration can be effectively carried out through theoretical constructs like TPACK and UTAUT. But, there is a far cry between the possibility of using AI for education and its reality in Nigeria educational institutions. Schools can clearly take advantage of AI to enhance personalized learning, intelligent tutoring and predictive analytics as evidenced by research around the globe (Holmes et al., 2021). The Role Of AI in Sub-Saharan Africa However, the incorporation of AI in sub- Saharan African still remains fragmented and nascent (Zawacki-Richter et al., 2019). This is a concept paper which looks at how AI can be transferred into Nigerian universities. It also looks at implementation challenges and evaluates the level to which the fit between AI integration and pedagogical goals or local educational contexts has been good.

Research Questions

This paper is guided by two questions:

- 1. How can AI be pedagogically integrated into Nigerian university curricula using the TPACK framework?
- 2. What behavioral and institutional factors influence the acceptance and use of AI technologies in Nigerian higher education?

3.1 Pedagogical Integration of AI into Nigerian University Curricula Using the TPACK Framework

The incorporation of AI into Nigeria's universities curriculum requires a contextually-driven and theoretically-refined pedagogical design. For guiding such integration, the TPACK framework provides a strong model. It focuses on the dynamic relationship between technology, pedagogy and content knowledge (Mishra & Koehler, 2006). In recent studies, the TPACK-combined framework has been adjusted to AI purposes. This has since evolved into what is currently known as AI-TPACK. The model includes factors as AI-Technological Knowledge (AI-TK), AIPedagogical Knowledge (AI-PK) and AI-Content Knowledge (AI-CK). These components help teachers integrate AI tools with the specific objectives and content of curricular materials. For example, Ning et al. (2024) show that integration of AI is not only a matter of technical expertise. It also calls for pedagogical flexibility and ethical consciousness, particularly in contexts that are developing.

The integration of AI in curricula has lots to tackle in the Nigerian context. These factors are infrastructure, preparedness of faculty and rigidity of the curriculum. Enhancement of science education with AI in Nigerian universities Olatunde-Aiyedun (2024) stresses that the enhancement and innovations associated with AI-enhanced science Education was becoming successful. These range from student engagement and learning performance. Yet the report

also exposes holes not only in teacher readiness, but in school support. These results reiterate the value of teaching development. AI literacy and pedagogical expertise should be developed through such programs in tandem. The author believes that the TPACK should be exploited as more than just a theoretical lens. It can be used as a policy tool for curriculum development. AI applications like intelligent tutoring systems, adaptive learning tools and automated feedback can be integrated into course delivery. This is successful where they are consistent with learning objectives and discipline standards. For STEM fields, AI may be used for simulation-based learning and on-the-fly analytics. In humanities, it can be used for personalised feedback and discourse analysis.

Also, there's the matter of ethics in AI integration that needs to be met. This entails worries about data privacy, algorithmic bias and epistemic justice. AI-TPACK should be developed to integrate ethical competencies (Karataş & Ataç, 2025). It should also promote culturally responsive pedagogy, so that education can be equitable and inclusive.

It can be concluded that the pedagogical integration of AI in Nigerian higher education curriculum using the TPACK framework is well approached on a multi level. This will need to be a combination of technical literacy, pedagogical innovation and relevant content. And it should recognize ethical and contextual nuance as well. More generally, any successful integration would need to be bolstered through policy change and institutional investment as well as continued professional development. Efforts in this regard, will go a long way to make AI really become a positive disruptive force in the Nigerian higher education.

3.2 Artificial Intelligence Integration in Nigerian Higher Education

Innovative potentials for AI to become part of Nigerian's higher education system, thereby creating opportunities for personalized learner centric, efficient and data driven learning. Yet, such opportunities go largely unrealised owing to the interaction between facilitating conditions and systemic barriers. Drawing on the unified theory of acceptance and use of technology (UTAUT) (Venkatesh et al., 2003) and the technological pedagogical content knowledge framework (TPACK), this paper argues that three integrated factors – institutional readiness; pedagogical alignment and systemic transformation – are critical for successful AI adoption in Nigerian universities. On a global scale, 4IR technology, especially AI, has been integrated into education. Despite their increasing popularity, there is limited uptake in such programs in many developing countries, Nigeria inclusive (Zawacki-Richter et al., 2019). Empirical studies highlight AI's capabilities in improving teaching quality, learner engagement and administration efficiency. However, evidence also suggests continuous bottlenecks—in terms of technological, infrastructural and pedagogical constraints—that obstruct meaningful use (UNESCO, 2022).

AI applications including machine essay marking, predictive analytics, personalised learning environments and intelligent tutoring systems have become increasingly common in higher education contexts (Holmes et al., 2021). This development is consistent with constructivist pedagogies that value student-centred learning, formative feedback and evidence for educational practice. Other critical perspectives counter that numerous AI tools have not been empirically tested as they are too narrowly focused and do not take into account a wide range of pedagogical contexts such as those in the Global South (Luckin et al., 2016; Zawacki-Richter et al., 2019). And in Africa, structural infrastructural deficits such as

inconsistent power supply and low quality broadband hamper the adoption of AI in universities. In Nigeria, in addition to the above challenges are ill-fund institutions and obsolete ICT facilities (Ade-Ibijola & Okonkwo, 2023). Also, policy frameworks often do not keep up with advancements in technology (Dunmade et al., 2023), leading to fragmentary and non-sustainable implementations of AI. In the absence of coherent national strategies, innovations are commonly disseminated in a piecemeal fashion and often fail to reach scale or effect change. Pedagogically, educators are widely skeptical of AI due to the lack of explicated affordances about how it might be a boon for teaching and learning. Many Nigerian lecturers doubt the instructional significance of AI, or dread its de-skilling capacity in their profession (Adedoyin & Soykan, 2020). The TPACK model highlights that the fusion of content, pedagogy and technology are essential. However, this integration is usually ineffective due to low digital literacy, lack of institutional support and poor professional development (Ade-Ibijola & Okonkwo, 2023).

The UTAUT framework also clarifies psychological and organizational factors that impact technology acceptance, for example perceived usefulness, ease of use, social influence and facilitating conditions. Within the Nigerian context, AI resistance is also shaped by perceptions of complexity, relevance and ethical considerations including data privacy, surveillance and algorithmic bias (Bond et al., 2021). These are the challenges to which there are no immediate technical solutions but for culturally resonant and ethically sound applications of AI. Importantly, the literature presents an irony between theoretical illusions of AI and contextual actualities of its application in Nigerian higher education. If AI presents opportunities for efficiency and personalization, its transformative promise can be realized only through structural changes in policy, infrastructure, instruction and institutional life. Without such reforms, AI is likely to be a veneer of innovation rather than changing the educational contour itself (UNESCO, 2022; Holmes et al., 2021).

3.3 Reframing AI Adoption in Nigerian Higher Education: Key Insights and Conceptual Implications

Notwithstanding the growing global concern for AI revolution in education, this has not been effectively adapted within Nigerian higher education as it is still underdeveloped and lopsided. A review of existing literature provides some linked insights on the structural and pedagogical dilemmas at stake.

The velocity and depth in which academia and industry are embracing AI widely differs. In the private sector, AI is a common tool used for process automation, prediction and customer personalisation. However, Nigerian Universities are behind due to a paucity of digital infrastructure, organisational inertia and poor strategic direction (Zawacki-Richter et al., 2019; Holmes et al., 2021). The promises of AI in education, such as adaptive teaching, support for administrative works, data-driven decision-making are widely acknowledged but application in the academic arena is still scanty (Celik et al., 2024; Ade-Ibijola & Okonkwo, 2023). This underuse is a result of technical barriers, institutional preparedness and weak penetration of faculty exposure to AI-driven pedagogies.

The current applications of AI in Nigerian universities are narrow-scoped; geared towards automation and personalization. These uses largely serve-efficiency related roles, like automatic grading, sharing of content and simple learner analytics (Bond et al., 2021;

Mhlanga, 2021). Although these are helpful though limited in comparison to the potential scope for AI to support transformative and inclusive teaching and learning practices. The effective and applicable AI introduction into higher education should clean away the barriers across all levels. These constitute infrastructural deficits, disjointed policies, scarce opportunities for professional development of teachers and lack of inter-sectoral cooperation to steer innovation (UNESCO, 2022; Venkatesh et al., 2003). Without answering these fundamental questions, initiatives to integrate AI risk are piecemeal, shallow, and ultimately ineffectual.

This revelation leads to an urgent call for a context-sensitive, pedagogically informed and systematically coherent approach towards the introduction of AI within Nigerian higher education. AI is not a tech bundle to tack on. Rather, incorporation of its lessons needs to be part of an institutional reinvention. That includes reworking curricula to emphasize AI and data literacy; investing in fair digital infrastructures; and setting up policy guidelines that mirror local epistemologies and societal needs. Beyond technocentrism, Nigerian universities can leverage AI not as a way to modernize education but also to build an inclusive, resilient and forward-looking higher education ecosystem.

3.4 Integrating Artificial Intelligence in Nigerian Higher Education: Challenges and Imperatives

Nigerian University can not afford to wish away the integration of Artificial Intelligence (AI) in her higher education service delivery, if teaching, learning, and administration needs to be standard. Nonetheless, while it is acknowledged that AI has the capability to be transformative in nature, its widespread integration into Nigerian universities is grossly impeded by a constellation of infrastructural, curricular, pedagogical and policy related obstacles. This requirement calls for a rigorous investigation of these barriers to unpack potential avenues for realistic and fair integration of AI.

The shortage of digital infrastructure, first and foremost, presents a major barrier to the implementation of AI. A number of the university systems in Nigeria have unreliable internet connectivity, obsolete computing infrastructure and limited access to cloud-based technologies which are critical requirements for scaling AI (Ade-Ibijola & Okonkwo, 2023). Meanwhile, bottlenecks include weak institutions and bureaucratic processes that diminish their capacity to promptly support innovation (UNESCO, 2022). Focusing on infrastructure alone would be inadequate, added the study - institutional readiness must also involve a strategic vision, implementing leaders and sustainable finance to enable AI readiness.

Second, there is a technological inequality issue to add on top. Fault lines that exist in technological resources between urban and rural campuses, student populations from diverse socioeconomic backgrounds, may be further exacerbated if not resolved (Bond et al., 2021). So any integration of AI needs to be providing equitable access and affordability, with not one but these policies baked into the system so that we don't leave people behind.

Third, pedagogical readiness is one of the most important factors that influence AI's educational impact. While AI-based solutions may provide personalized learning, higher productivity of administrative process and other similar benefits, the real value (McNemar-Baionnoouky et al., 2024) lies in that students develop necessary competencies for the nowadays world (critical thinking, creativity and collaboration abilities

etc.)(ARGMacGregor and Adkisson, 2021). But the problem is that Nigerian's teachers are not well-prepared to make use of AI for teaching due to lack of training and minimal exposure to such enhanced methods. This technological and pedagogical divide is compounded when faculty worry about academic identity, kudzu-like mission creep and ethical conduct. Through reference to the Unified Theory of Acceptance and Use of technology (UTAUT), it is apparent that in order to overcome these barriers, there is a need for situated interventions which increase digital confidence by emphasising pedagogical relevance and continuous professional development (Venkatesh et al., 2003). Institutional enablers, such as innovation pockets and focused research resources are crucial for building the faculty strength required to drive sustainable AI adoption.

In addition, AI implementation must not be considered as a mere technological upgrade, instead, it is an imperative mechanism of systemic change across the Nigerian higher education landscape. This transition requires a shift in paradigm from typical transmission-based pedagogy for such digital-age teaching that concentrates on learner-centered methodologies that emphasize not only digital literacy and moral reasoning but also interdisciplinary collaborations (Holmes et al., 2021). Realizing this vision will demand a reimagination of curricula to integrate data ethics, AI literacy, and cross-disciplinary problem solving. Regrettably, AI applications in higher education are fragmented and unevenly developed because of the absence of a comprehensive national policy framework (UNESCO, 2022). This has resulted into an urgent demand for a shared roadmap to be set by the government, academia and industry, in order to standardize ethical governance, quality assurance and methodical monitoring of AI deployment in educational environments.

Finally, to avoid a perpetuation of neo-colonial forms of education, the AI integration should be informed by cultural as well as epistemological underpinnings and principles. Using imported AI frameworks without vigorous modification may marginalize local knowledge systems and African teaching traditions, perpetuating epistemic injustices (Zawacki-Richter et al., 2019). A decolonial stratagem, which is capable of integrating local knowledge, linguistic diversity and context-relevant content into AI applications, in order to facilitate inclusivity and context relevance in the higher education system of Nigeria.

In summary, the effective introduction of AI into Nigerian universities will require a strategy that takes account of infrastructural gaps, teacher preparedness, institutional readiness, policy coherence and cultural idiosyncrasy. Without the broader framework of inclusion, equity and accessibility, AI can become just another mechanism for deepening technology gaps instead of being a force that helps schools prepare all learners for successful future lives.

3.5 Skills Development in Higher Education in the Fourth Industrial Revolution (4IR) Era

The Fourth Industrial Revolution (4IR) has ushered in transformative changes across industries globally, necessitating a reevaluation of the skills required by graduates to remain competitive and employable. Several scholars have examined this dynamic, focusing particularly on the Nigerian and broader African contexts, where educational systems face unique challenges in aligning with 4IR demands. Tella, Bamidele, Olaniyi, and Ajani (n.d.) emphasize that Nigerian graduates need a blend of technical skills such as digital literacy, coding, and data analytics. They also require soft skills, including critical thinking, creativity,

and emotional intelligence, to adapt effectively to 4IR disruptions. They highlight systemic issues like outdated curricula and inadequate ICT infrastructure that hinder graduate preparedness. This aligns with Adegbite and Adeosun (2021), who argue that employability readiness hinges on graduates' ability to integrate digital, cognitive, and interpersonal skills. They call for Nigerian higher education institutions to adopt experiential learning and innovation-focused pedagogies that respond to evolving labor market needs.

Beyond Nigeria, Aliu, Aigbayboa, and Thwala (2021) propose a 21st-century employability skills framework tailored to the construction industry but with broader applicability. Their framework underscores critical thinking, adaptability, digital proficiency, and collaborative problem-solving, while advocating for stronger industry and education linkages. Similarly, Dada (2024) investigates the technopreneurial and innovative behaviors of fresh graduates in Lagos State. The study identifies an entrepreneurial mindset, creativity, and digital tool utilization as vital for economic success. Dada emphasizes the role of targeted educational programs and real-world exposure in fostering these competencies. The workforce implications of 4IR extend to human resource management. Esan (n.d.), through a systematic review, highlights the necessity of continuous upskilling, reskilling, and managing deskilling caused by automation and AI integration. He advocates adaptive HR strategies and lifelong learning frameworks to address these shifts, reinforcing the urgency for educational systems to embed continuous skill development. Ketchiwou and Ngulube (2023) broaden this discourse by examining 4IR skills development in selected African countries. They highlight infrastructural and policy gaps that limit skill acquisition and recommend context-sensitive reforms, increased ICT investments, and enhanced public-private partnerships to drive inclusive digital transformation.

From a pedagogical perspective, Odewole, Sobowale, and Uzzi (2023) focus on the 4Cs: critical thinking, creativity, communication, and collaboration. They argue that design education plays a pivotal role in cultivating these transversal skills. Their work calls for curriculum innovations that embed problem-solving and interdisciplinary collaboration to foster sustainability and future-ready graduates. Agolla (2022) highlights the transformative potential of Industry 4.0 for African workplaces, emphasizing the role of education in developing critical workplace skills that align with industrial demands. He underscores the necessity for proactive educational reforms and investment in skill development to enhance Africa's global competitiveness. Ilori and Ajagunna (2020) further advocate for reimagining education in the 4IR era by integrating digital literacy, problem-solving, creativity, and lifelong learning into curricula, supported by flexible learning environments and emerging technologies.

In post-pandemic Nigeria, Kayode (2023) draws attention to the compounded challenges of technological unemployment and skill mismatch, noting how accelerated digital transformation continues to disrupt labor markets. Kayode advocates higher education reforms emphasizing flexible curricula, digital skills training, and lifelong learning to bridge these gaps and improve graduate employability. Synthesizing these perspectives, Aboderin and Havenga (2024) provide a systematic literature review identifying essential skills and strategic approaches in higher education for 4IR readiness. Their study highlights technical skills, digital literacy, creativity, adaptability, and problem-solving as foundational competencies. They argue for comprehensive strategies including curriculum innovation, faculty development, ICT infrastructure enhancement, and industry collaboration. Crucially, they emphasize lifelong learning as integral to equipping graduates for a fast-evolving technological landscape.

Collectively, these studies underscore a consensus that 4IR demands a multifaceted skill set combining technical prowess with critical soft skills, alongside systemic reforms in education and industry collaboration to prepare graduates for future workplaces in Nigeria, Africa, and beyond.

3.6 Strategies for Integrating Artificial Intelligence in Nigerian Universities to Promote Skill Development

Skill acquisition in Nigerian universities is on the brink of revolution, with Artificial Intelligence (AI). But its integration should be deliberate and mindful of the local realities. One crucial foundational step is for there to be a national policy framework. It should articulate a bold vision for AI in education. An instrument should comprise regulatory rules, ethical principles and deployment options. It also needs to tackle digital equity, data governance, training for educators, and monitoring and evaluation systems. Inclusive policymaking is crucial. There is a need to involve stakeholders, including the universities, ICT professionals, and civil society. Literacy participation guarantees adherence to global best practices and the peculiar needs of Nigeria's education (UNESCO, 2022).

Although AI shows promise, infrastructural constraints are a significant roadblock. Reliable internet, cloud computing services and AI-powered learning environments are a luxury in most Nigerian universities. These gaps are what creates obstacles to the use of AI-based tools. They exacerbate educational disparities, particularly at rural and under-resourced schools. To address such issues universities need to invest in basic infrastructure. Among these are AI R&D centers, learning analytics divisions, and interdepartmental labs. That will also support local innovation. Furthermore, they would link up academic research to national development agendas (Sarfo et al., 2024).

Curriculum reform is also essential. Each academic pathway should include an understanding of AI. These might include AI literacy, data ethics and algorithmic thinking. As the curriculum evolves, faculty development should accommodate these changes. Teachers need instruction in how to use AI tools well in their teaching. Support might be provided via professional learning communities, focused workshops and cross-disciplinary fellowships (Luckin et al., 2016; Mishra & Koehler, 2006). TPACK draws attention to the importance of integrating technology, pedagogy and content. Yet, most Nigerian teachers are not integrated. The employer expects to simply be able to use a new technology from day one, regardless of the impact on its employees. "Around the world is observed, and its technology develops faster than vocational training as well." The UTAUT model indicates that perceived usefulness and ease of use are predictors of technology acceptance (Venkatesh, Morris, & Davis, 2003). Hence upskilling and awareness programmes are critical. They support enhanced faculty engagement and digital confidence.

We need to be thinking about the ethical and cultural aspects of AI integration. Western-oriented AI models can eclipse indigenous knowledge systems. They may also perpetuate epistemic injustice. Language diversity and cultural relevance must be supported by AI tools, especially in Nigerian universities. There should be ethical audits and impact assessments by institutions. If followed, these are the steps towards responsible AI use. They will also mitigate challenges and achieve justice in education (Bond et al., 2021, Zawacki-Richter et al., 2019).

Systemic challenges also exist. Absence of national policy and decentralised leadership are barriers to AI adoption. Effective governance requires clear policies. These could include ethics, financing, quality assurance and cross-sector collaboration. Such collaborations between government, academia, industry and civil society are crucial. These partnerships can create sustainable and inclusive AI ecosystems (Dunmade et al., 2023). Public-private partnerships and regional networks can be helpful, too. They can accelerate knowledge exchange, resource generation and policy harmonisation (Holmes et al., 2021).

Finally, in spite of the benefits promised by AI including personalized learning and data-driven decision-making, its role in Nigerian universities is not clear. In the absence of local research, AI might work as a top-down solution. This can potentially be out of touch with what learners need. More research should consider the actual acquisition of knowledge, as well as student engagement and long-term skill development. Therefore, the findings of this study will guide evidence-based practices (Adedoyin & Soykan, 2020).

4. Discussions and Recommendations

This study recommends three on the basis of the findings. First Nigerian universities should institutionalize a framework on how to leverage Fourth Industrial Revolution (4IR) technologies. These efforts should take into account the realities of the institutions, and of national education objectives to ensure relevance and sustainability (Dunmade et al., 2023). The second is the importance of teacher training in digital teaching tools. Improving faculty skills in learning to use AI and other digital tools is likely to enhance pedagogical efficiency and diminish resistance toward integrating technology (Adedoyin & Soykan, 2020). Thirdly, it is important to invest in digital infrastructure, ranging from dependable internet connectivity and state-of-the-art hardware to secure platforms that support skills development and equal access to technology-enhanced learning (Mhlanga 2021). This advice offers practical steps toward accelerating 4IR integration in Nigerian higher education, to ensure that innovation remains context-relative and inclusive.

5. Conclusion

The challenge of the digital era The adoption of AI in Nigerian universities is a great opportunity to reconfigure tertiary education for the 4th Industrial Revolution. But the potential of AI will be unrealized if structural obstacles are not confronted through intentional solutions. As this paper has demonstrated, the incorporation of AI is not as much a technical issue as it is pedagogical, infrastructural, ethical and cultural. By deploying frameworks such as TPACK and UTAUT, institutions are able to gain a deeper insight into the interplay between technology, pedagogy, and user acceptance.

To bridge the rhetoric and reality, we need to begin by focusing on constructing AI-ready agencies – those that are enabled, inclusive and have a pedagogy for this. From the perspective of 'skills generation', AI can only be seen as a capacity-building fort when it is programmatic; its deployment becomes situational and ethically respectful for preparing

Nigerian graduates to face the challenges and take advantage of emerging conditions on a global scale.

Maximizing the potential of AI in Nigerian HE also requires a comprehensive approach to address infrastructure deficit, pedagogical capability, ethical and cultural appropriateness, as well as systemic policy coherence. Understanding AI as an element of a larger socio-technical system rather than a single innovation helps us to overcome some complexity of 4IR technologies, support capacity for navigating their wicked problems and transform possibilities for more equitable, inclusive and future-prepared education.

Implications of the Study

This paper identifies the main challenges and strategic options for incorporating Fourth Industrial Revolution (4IR) technologies, in particular AI, into Nigerian higher education. Although they hold promise for transformation and future skills acquisition, these technologies are still not widely adopted with many barriers (such as policy vacuum, infrastructure inadequacies and low digital literacy among stakeholders) inhibiting widespread use of the technologies. Applying the TPACK (Technological Pedagogical Content Knowledge) and UTAUT (Unified Theory of Acceptance and Use of Technology) models indicates that it is essential to take a holistic approach towards AI integration. These models illustrate that the success of incorporation does not depend only on the existence of tools, but also on the teacher's pedagogical proficiency, users' perceptions and institutional preparedness.

Results reveal the need for well-thought out systemic planning and capacity building programmes that will address Nigeria's sociotechnical context. Policy makers, university and college administrators and instructors need to collaborate on developing contextualized strategies that meet specific national development goals and are pedagogically relevant by situating digital innovations in local contexts. Formal training programs to be implemented in order to improve pedagogical skills at digital teaching & to develop favourable attitudes towards innovation, are especially important for encouraging technology uptake.

In conclusion, the paper offers a contribution to dialogue on digital transformation in African higher education, considering that effective AI adoption and other 4IR technologies require coordinated action involving multiple stakeholders. These findings provide a reference point for future studies and specific interventions that might utilize new technologies to promote inclusive, skill-based learning today in Nigeria, and elsewhere.

Reference

Adedoyin, O. B., & Soykan, E. (2023). Covid-19 pandemic and online learning: the challenges and opportunities. *Interactive learning environments*, 31(2), 863-875. https://doi.org/10.1080/10494820.2020.1813180

Adegbite, W. M., & Adeosun, O. T. (2021). Fourth industrial revolution skillsets and employability readiness for future job. *Global Journal of Social Sciences Studies*, 7(1), 35-49.

Ade-Ibijola, A., & Okonkwo, C. (2023). Artificial intelligence in Africa: Emerging challenges. In *Responsible AI in Africa: Challenges and opportunities* (pp. 101-117). Cham: Springer International Publishing.

Alimisis, D. (2021). Technologies for an inclusive robotics education. *Open Research Europe*, 1, 40.

Aliu, J., Aigbavboa, C., & Thwala, W. (2021). A 21st century employability skills improvement framework for the construction industry. Routledge.

Bond, M., Marín, V. I., Dolch, C., Bedenlier, S., & Zawacki-Richter, O. (2018). Digital transformation in German higher education: student and teacher perceptions and usage of digital media. *International journal of educational technology in higher education*, 15(1), 1-20.

Carrim, N. (2022). 4IR in South Africa and some of its educational implications. *Journal of Education (University of KwaZulu-Natal)*, (86), 3-20.

Celik, I., Gedrimiene, E., Siklander, S., & Muukkonen, H. (2024). The affordances of artificial intelligence-based tools for supporting 21st-century skills: A systematic review of empirical research in higher education. *Australasian Journal of Educational Technology*, 40(3), 19-38.

Chang, T.-W., & Hung, C.-Z. (2021). How to Shape the Employees' Organization Sustainable Green Knowledge Sharing: Cross-Level Effect of Green Organizational Identity Effect on Green Management Behavior and Performance of Members. Sustainability, 13(2), 626. https://doi.org/10.3390/su13020626

Citaristi, I. (2022). United Nations Educational, Scientific and Cultural Organization—UNESCO. In The Europa Directory of International Organizations 2022 (pp. 369-375). Routledge.

Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. Routledge.

Costache B (2024) Rethinking the training of teaching staff through the development of internship and mentoring programs, ICERI2024 Proceedings, pp. 5846-5852. https://doi.org/10.21125/iceri.2024.1419

Costache, B., & Enachescu, V. (2025). Artificial Intelligence in Educational Leadership: Strategic Pathways for Resilient Learning Systems. *International Journal of Education*,

Leadership, Artificial Intelligence, Computing, Business, Life Sciences, and Society, 1(01), 17-28.

Costache, B., & Petcu, C. (2025). Burnout and Resilience in Education: Integrating Mindfulness, Motivation, and Contextual Moderators for Sustainable Well-being. *International Journal of Education, Leadership, Artificial Intelligence, Computing, Business, Life Sciences, and Society*, 2(02), 26-37.

Cowin, J. (2021). The fourth industrial revolution: Technology and education. *Journal of Systemics, Cybernetics and Informatics*, 19(8), 53-63. http://doi.org/10.54808/JSCI.19.08.53

Dada, A. D. (2019). Critical Skills for the 21st Century: Technopreneurial and Innovative Behaviour of Fresh Graduates in Lagos State, Nigeria. *Readings in technology management*, (1), 270-298.

Dunmade, A. O., Ajani, Y. A. Y., Yusuf, S., & Ahmed, A. O. Looking Beyond The Fourth Industrial Revolution (4IR): Implications and Prospects for Nigerian Academics. *Edulib*, 13(2), 155-175.

Enăchescu, V. A. (2025). Rethinking Educational Management: Preparing Leaders for Global Sustainability and Ethical Challenges in a Digital Era. *Review of International Comparative Management/Revista de Management Comparat International*, 26(2).

Esan, O. (2023). Systematic review of human resource management demand in the fourth industrial revolution era: implication of upskilling, reskilling and deskilling. *Lead City Journal of the Social Sciences*, 88.

Gleason, N. W. (2018). *Higher education in the era of the fourth industrial revolution* (p. 229). Springer Nature. https://doi.org/10.1007/978-981-13-0194-0

Holmes, W., Bialik, M., & Fadel, C. (2019). *Artificial intelligence in education promises and implications for teaching and learning*. Center for Curriculum Redesign.

Ilori, M. O., & Ajagunna, I. (2020). Re-imagining the future of education in the era of the fourth industrial revolution. *Worldwide Hospitality and Tourism Themes*, 12(1), 3-12.

Karataş, F., & Ataç, B. A. (2025). When TPACK meets artificial intelligence: Analyzing TPACK and AI-TPACK components through structural equation modelling. *Education and Information Technologies*, *30*(7), 8979-9004.

Kayode, H. M. (2023). Technological unemployment, skill mismatch and the future of higher education in post-pandemic Nigeria. *Qeios*, 5, 1-17.

Ketchiwou, G. F., & Ngulube, P. (2023). Developing Skills for the Fourth Industrial Revolution in Developing Economies: Drawing from Selected African Countries. *Africa Insight*, 53(2), 34-51.

Luckin, R., & Holmes, W. (2016). Intelligence unleashed: An argument for AI in education.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. *Teachers college record*, 108(6), 1017-1054.

Nigerian Communications Commission. (2020). National Digital Economy Policy and Strategy (2020-2030).

Ning, Y., Zhang, C., Xu, B., Zhou, Y., & Wijaya, T. T. (2024). Teachers' AI-TPACK: Exploring the Relationship between Knowledge Elements. Sustainability, 16(3), 978. https://doi.org/10.3390/su16030978

Odewole, P. O., Sobowale, T. O., & Uzzi, F. O. (2023). The Place of Design Education in Achieving 4IR Sustainability through the 4Cs Skill-sets. *Design and Technology Education*, 28(2), 89-106.

OECD. (2021). Digital education outlook 2021: Pushing the frontiers with AI, blockchain, and robots. OECD Publishing. https://doi.org/10.1787/589b283f-en

Olatunde-Aiyedun, T. G. (2024). Artificial intelligence (AI) in education: integration of AI into science education curriculum in Nigerian universities. International Journal of Artificial Intelligence for Digital, 1(1).

UNESCO, P. (2021). *Reimagining our futures together: A new social contract for education*. Paris, France: Educational and Cultural Organization of the United Nations.

Sarfo, J. O., Tachie-Donkor, G., Aggrey, E. K., & Mordi, P. (2024). Attitudes, Perceptions, and Challenges Towards Artificial Intelligence Adoption in Ghana and Nigeria: A Systematic Review with a Narrative Synthesis Attitudes, Perceptions, and Challenges Towards Artificial Intelligence. *International Journal of Media and Information Literacy*, 9(2), 437-452.

Schwab, K., & Samans, R. (2016, January). The future of jobs: Employment, skills and workforce strategy for the fourth industrial revolution. In World Economic Forum (pp. 1-32).

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS quarterly*, 425-478.425–478. https://doi.org/10.2307/30036540

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education—where are the educators?. *International journal of educational technology in higher education*, *16*(1), 1-27., https://doi.org/10.1186/s41239-019-0171-0