

The Katch-McArdle Formula for TDEE Estimation: Applications in Sports Science and Bodybuilding Research

Cristian Băltărețu¹, Bogdan Costache², Andreea Voinea³

¹Bucharest University of Economic Studies, Bucharest, Romania

²Bucharest University of Economic Studies, Bucharest, Romania

³Bucharest University of Economic Studies, Bucharest, Romania

Abstract

Accurately quantifying Total Daily Energy Expenditure (TDEE) is essential to practicing fitness science, sports nutrition, and bodybuilding research. Classic predictive equations, including Harris–Benedict and Mifflin–St. Jeor base their calculations primarily on total body weight and demographic factors that could underestimate calories in athletes and overestimate them in those with higher percentages of body fat. The Katch-McArdle (K-M) equation represents an important methodologic improvement because lean body mass (LBM), a major determinant of metabolism, is included and maintains the specificity for populations with greater muscle mass or unusual body composition. This report provides an extensive review of the theoretical background, validation studies, and applications of the K-M model in sport and clinical settings. Comparison with indirect calorimetry and doubly labeled water studies reveals the equation's close relationship to fat free mass and low error of the estimate, indicating that it is highly suited to resistance-trained individuals and athletes, such as bodybuilders. K-M use within nutritional periodization, optimization of physique and body weight regulation are also further discussed in the review with particular reference to methodology issues pertaining to the assessment of body composition. This article emphasises the equation's utility as a convenient and evidence-based tool for customising energy availability targets and exercise training prescriptions, and advocates its potential in the progression of personalised protocols within sports science and applied nutrition research.

Keywords

Total Daily Energy Expenditure (TDEE), Resting Metabolic Rate (RMR), Katch-McArdle Equation, Lean Body Mass (LBM), Body Composition, Indirect Calorimetry, Sports Nutrition, Bodybuilding, Exercise Physiology, Predictive Energy Equations

Introduction

Precise estimation of energy expenditure is essential for exercise science, sports nutrition and clinical health research. The total caloric expenditure of an individual, known as Total Daily Energy Expenditure (TDEE), is comprised of three primary components: Resting Metabolic Rate (RMR), the Thermic Effect of Food (TEF), and the Thermic Effect of Physical Activity (TEPA). RMR, which is also known as Resting Energy Expenditure (REE), contributes to 60–75% of total daily caloric expenditure and most RMR variations are explained by lean body mass (LBM) irrespective of age, gender, and

hormonal status. Accordingly, an accurate assessment of RMR and TDEE is important for fine-tuning nutrition strategies, programming training loads and managing body composition in athletes and exercisers.

Predictive equations, such as the Harris–Benedict (1918) and Mifflin–St. Jeor (1990), are based on varied population samples and depend largely on anthropometric assessments, such as body weight, height, age and sex. Although employed broadly in the clinical setting, these predictive models are characterized by systematic biases in a number of patients subgroups such as resistance-trained athletes, obese individuals or subjects with non-canonical body composition. On the other hand, the Katch-McArdle (K-M) equation includes fat-free mass (FFM), and then it becomes a potential predictor of metabolic rate:

$$\text{RMR (kcal/day)} = 370 + (21.6 \times \text{FFM in kg})$$

This equation, by directly linking energy needs to metabolically active tissue, successfully overcomes the limitations of weight-based models.

Numerous publications justify the importance of body composition in metabolic calculations. Muscle tissue is metabolically much more potent than fat, and it just so happens that athletes contain relatively higher amounts of lean mass, thus requiring larger caloric requirements. A novel way to estimate energy needs that incorporates the use of FFM may provide a more accurate approach to calorie planning for training, hypertrophy and contest preparation in bodybuilding.

Indirect calorimetry and doubly labeled water methods are the gold standards for assessment of energy expenditure, providing a very high precision but limited availability on account of cost and technical prerequisites. As predictive models, such as K-M provide a convenient and scalable solution for field settings, using such equations enable researchers/designers to develop evidence-based dietary/exercise interventions.

The aim of this article is to critically reinterpret sensitivity of the equation K-M in sports science and bodybuilding, summarizing findings from comparative studies, addressing methodological challenges and considering its implementation within high-performance training and nutrition. Compared to the traditional prediction models, this study found a discernible justification of individualized energy expenditure assessment for refined athlete's health and performance benefits.

Literature Review

Energy expenditure estimation has been a major issue in exercise physiology and nutrition science for over a century. Objectives: Precision in estimating Resting Metabolic Rate (RMR) and Total Daily Energy Expenditure (TDEE) is the cornerstone to diet planning, body composition control, and athletic enhancement aiming at better performance. Numerous predictive equations have been utilized and validated against the method of indirect calorimetry, which is also known as the “gold standard” for RMR assessment.

Historical Context of Predictive Equations

The Harris–Benedict equation is one of the early equations that aimed to accurately predict RMR without direct measurements from body weight, height, age, and sex in 1918. Although updated in 1984 to take into account the difference in modern body composition norms, it has shown unpredictable predictive accuracy especially for those with unusual body compositions such as athletes and obese. The Mifflin–St.Jeor equation (1990) was developed to increase the accuracy among a wider population, however, it remains general and does not specifically address individuals with higher LBM resulting in underestimations for strength athletes and bodybuilders.

Katch-McArdle Formula and the Role of Lean Body Mass

The Katch-McArdle (K-M) equation represents a significant advancement in energy expenditure estimation because it integrates fat-free mass (FFM), which has a stronger correlation with metabolic activity than total body weight. Studies show that RMR is largely influenced by lean tissue and much less so by adipose, indicating the importance of prediction models based on body composition. This renders K-M especially useful for resistance-trained individuals, in whom LBM diverges markedly from general population standards.

Comparative Validation Studies

Several studies have compared K-M to traditional predictive equations:

- **Branco et al. (2018):** In a study of rhythmic and artistic gymnasts, none of the tested equations perfectly matched indirect calorimetry results. However, K-M and Cunningham (1980) demonstrated the highest correlation with measured RMR ($r \approx 0.98$) due to their reliance on LBM.
- **El-Kateb et al. (2018):** In peritoneal dialysis patients, K-M exhibited closer agreement with measured RMR and skeletal muscle mass compared to Harris–Benedict and Mifflin–St. Jeor, while Cunningham slightly overestimated RMR.
- **Comana (2016):** Highlighted that K-M reduced error margins in both obese and athletic populations by addressing inter-individual variability in metabolic tissue mass.
- **Hall et al. (2004):** Demonstrated that prediction equations such as ACSM and K-M, which incorporate physiological parameters, outperform simpler tables (e.g., McArdle's static energy tables) in estimating exercise energy cost, underscoring the need for individualized approaches.

Implications for Sports and Bodybuilding

The precision of K-M makes it particularly applicable for bodybuilding since caloric mapping during hypertrophic and cutting cycles necessitates accurate energy estimations. Athletes often manipulate energy balance within tight margins ($\pm 5–10\%$), and inaccuracies in prediction equations can lead to suboptimal performance, impaired recovery, or difficulty achieving desired body composition. K-M's reliance on body composition makes it adaptable to dynamic changes in muscle mass across training cycles, unlike weight-based models that remain static.

Limitations and Considerations

Although K-M demonstrates superior predictive validity, its estimation accuracy is reliant on accurate body composition measurement. Measuring tools such for the measurement, based on X-rays or electric currents, DXA - X-ray absorptiometry or BIA - bioelectrical impedance analysis, or with skinfold caliper rule capture varying error rates which may pass on to energy quantification errors - can propagate into caloric estimation inaccuracies. In addition, equations may need to be readjusted in specific populations (e.g., elderly or clinical patients) where differences may exist in metabolic activity rate not fully captured by FFM.

Taken together, the literature supports the K-M equation as one of the most accurate and useful methods for estimating RMR amongst athletes and active populations, although further validation work against gold standard methodology is needed.

Research Methodology

This study employed a **scoping review methodology** designed to synthesize existing literature on the Katch-McArdle (K-M) equation, its validation, and its application in sports science and bodybuilding contexts. The research process followed structured steps to ensure academic rigor and reproducibility.

1. Literature Search Strategy

A systematic search was conducted in **PubMed**, **ScienceDirect**, **Scielo**, and **Google Scholar** to identify studies published between 2000 and 2024. Search terms included:

- “Katch-McArdle equation,”
- “resting metabolic rate prediction,”
- “total daily energy expenditure,”
- “body composition and energy expenditure,”
- “indirect calorimetry validation.”

Boolean operators (AND, OR) and truncations were used to expand search results, and additional studies were identified via reference mining from key articles.

2. Inclusion and Exclusion Criteria

Studies were included if they:

- Comparing K-M to other predictive equations (Harris–Benedict, Mifflin–St. Jeor, Cunningham, FAO/WHO).
- Used **indirect calorimetry** or **doubly labeled water** as validation standards.
- Included **athletic, resistance-trained, or clinical populations** with diverse body composition profiles.
- Were peer-reviewed journal articles or conference papers in English or Portuguese/Spanish (with translation).

Exclusion criteria:

- Non-peer-reviewed sources (blogs, opinion pieces).
- Studies lacking quantitative validation data or clear methodology.
- Populations outside the scope of fitness, health, or performance research.

3. Data Extraction

Data from eligible studies were extracted systematically and organized in comparative tables to analyze:

- Sample size and characteristics (e.g., age, sex, athletic level).
- Method of body composition assessment (DXA, BIA, skinfolds).
- Reported RMR/TDEE values.
- Bias and standard error between prediction equations and measured values.
- Correlation coefficients (Pearson's r) and percentage error margins.

4. Comparative Analysis

A narrative synthesis and statistical summary were used to:

- Identify patterns of accuracy and bias across equations.
- Evaluate the influence of **lean body mass (LBM)** on prediction accuracy.
- Determine equation suitability for athletic vs. general populations.

Studies such as Branco et al. (2018) and El-Kateb et al. (2018) served as primary validation references, as they compared K-M with multiple equations and linked findings to gold-standard measurements.

5. Quality Appraisal

A simplified version of the **Newcastle-Ottawa Scale** was applied to evaluate methodological rigor, focusing on:

- Clarity of inclusion criteria,
- Precision of calorimetry measurements,
- Validity of body composition assessment methods,
- Statistical robustness (use of Bland-Altman plots, ANOVA, regression models).

6. Integration with Sports Science Context

To align findings with bodybuilding and resistance training contexts, additional narrative data from exercise physiology texts (McArdle, Katch & Katch, 2010; Wilmore & Costill, 2005) were integrated to interpret practical implications for athletes, particularly during hypertrophy and cutting phases.

Results

A synthesis of the reviewed studies highlights that the **Katch-McArdle (K-M) equation** demonstrates superior accuracy compared to weight-based prediction models when estimating Resting Metabolic Rate (RMR) and Total Daily Energy Expenditure (TDEE), especially in populations with elevated lean body mass (LBM).

1. Accuracy of Katch-McArdle vs. Traditional Equations

Comparative studies consistently show that K-M's reliance on fat-free mass (FFM) minimizes prediction error relative to equations that estimate energy expenditure from body weight, height, and demographic variables.

- **Branco et al. (2018)** studied 11 elite rhythmic and artistic gymnasts and observed that K-M exhibited the highest correlation with indirect calorimetry (Pearson's $r \approx 0.98$) among all tested equations. While none of the predictive models perfectly matched calorimetry, K-M demonstrated the smallest average bias (<5%) when applied to a highly trained, low body-fat population.

- **El-Kateb et al. (2018)** evaluated peritoneal dialysis patients ($n = 118$) and reported that K-M maintained a strong association with skeletal muscle mass and nitrogen appearance rate, resulting in prediction bias under ± 15 kcal/day for men and ± 82 kcal/day for women, whereas Mifflin–St. Jeor underestimated RMR by up to 175 kcal/day in female patients.
- **Comana (2016)** emphasized that K-M's use of LBM significantly reduces variability in obese and athletic individuals, where traditional equations misclassify caloric needs by $\pm 10\text{--}15\%$.

These findings suggest that K-M is more robust in populations with high muscularity or altered body composition, whereas Harris–Benedict and Mifflin–St. Jeor exhibit higher variability and systematic underestimation in athletic cohorts.

2. Error Margins and Bias Analysis

Bland-Altman analyses across reviewed studies demonstrated that:

- **K-M and Cunningham equations** showed the narrowest limits of agreement ($\pm 5\text{--}7\%$),
- **Harris–Benedict and Mifflin–St. Jeor** exhibited wider confidence intervals ($\pm 10\text{--}15\%$),
- In clinical settings, equations that did not adjust for LBM tended to underestimate RMR, leading to inappropriate caloric recommendations.

For example, El-Kateb et al. found that Cunningham overestimated RMR in male patients, while K-M balanced accuracy across sexes.

3. Implications for Exercise Energy Expenditure

Hall et al. (2004) validated exercise-related prediction tables and found that metabolic equations integrating physiological parameters (e.g., ACSM and K-M) predicted energy expenditure during walking and running within $\pm 5\text{--}10$ kcal per mile, outperforming static reference tables such as McArdle's chart, which overestimated caloric cost by 10–15%.

4. Suitability for Bodybuilding and Resistance Training

Bodybuilders and strength athletes present unique metabolic challenges due to elevated LBM and reduced fat mass.

- Predictive models based solely on weight underestimate caloric needs, risking inadequate energy intake during hypertrophy phases.
- K-M's direct integration of FFM enables individualized caloric targets that adjust dynamically with changes in body composition, making it particularly useful during contest preparation or cutting phases where precision is critical.
- This aligns with findings from exercise physiology literature showing that skeletal muscle accounts for 20–25% of RMR variability, reinforcing the necessity of composition-based formulas.

5. Summary Table of Key Comparisons

Equation	Primary Variables	Error Margin vs. Indirect Calorimetry	Strengths	Limitations
Katch-McArdle	Lean body mass	±5%	High accuracy in athletes; adaptable	Requires precise FFM measure
Cunningham	FFM	±6%	Good accuracy; similar to K-M	Overestimation in some groups
Mifflin–St. Jeor	Weight, height	±10–15%	Easy to calculate	Underestimates in muscular individuals
Harris–Benedict	Weight, height	±12–15%	Historic use; general populations	Not suitable for athletes

Overall, the evidence strongly supports K-M as one of the most precise field-applicable equations for RMR and TDEE prediction, particularly in sports science, bodybuilding, and clinical populations requiring individualized dietary planning.

Discussion

The results of this study indicate that the Katch-McArdle (K-M) equation is highly relevant for predicting Resting Metabolic Rate - RMR and Total Daily Energy Expenditure - TDEE with high accuracy, particularly in athletic and resistance-trained individuals. The K-M equation's emphasis on lean body mass - LBM instead of total body weight without doubt constitutes an advantage of the method, as other formulas tend to underpredict the caloric needs in those with a higher muscle mass amount and lower body fat percentage.

1. Importance of Lean Body Mass in Energy Prediction

Body composition plays an important role in metabolism. Skeletal muscle is a metabolically active tissue and contributes substantially to RMR, whereas adipose tissue has much lower metabolic demands. This correlation accounts for the fact that weight-based prediction equations such as Harris–Benedict and Mifflin–St. Jeor method underestimates EER in athletes, which may result in inadequate energy intake during hypertrophy or maintenance periods and too-stringent restrictions during cutting phases. The K-M equation offers a more personalized and physiological accurate evaluation, justified in its use with elite sports, body building and tailored nutrition planning.

2. Applications in Bodybuilding and Performance Sports

Body composition is important for metabolism. Skeletal muscle is metabolically active tissue and accounts to a large extent for RMR, whereas the metabolic demand of adipose tissue is relatively low. This relationship responds to the reality that body weight-based prediction equations, such as Harris–Benedict and Mifflin–St. Jeor method underestimates EER in athletes and could lead to insufficient nutrient intake during periods of hypertrophy or maintenance and overly restrictive limits in multiply periodized dietary plans. The K-M equation provides a more individual and physiologically accurate

assessment, supported by its application with high performance sports, body building as well as individualized dietary planning.

- **Hypertrophy Phase:** K-M ensures caloric surpluses are tailored to lean mass, reducing unnecessary fat accumulation.
- **Cutting Phase:** K-M helps maintain sufficient energy intake to preserve muscle mass while facilitating fat loss.
- **Strength & Conditioning Programs:** Accurate TDEE predictions support periodized training models, especially in sports requiring weight-class management.

3. Clinical and Health Implications

While used mainly in sports science, the depth of K-M's precision also encompasses clinical populations. El-Kateb et al. (2018) found that the equations adding FFM were highly correlated with the nitrogen appearance rate and muscle mass, which would support nutritional interventions in chronic kidney disease patients. This demonstrates the flexibility of the equation in athletic and clinical nutritional settings.

4. Limitations and Sources of Error

Although K-M performs better than standard equations, accuracy still relies on accurate measurement of fat-free mass, which, for example DXA (dual-energy X-ray absorptiometry) and multi-frequency bioelectrical impedance analysis (BIA), is greater than skinfolds caliper but not widely available. Furthermore, predictive equations fail to account for differences due to endocrine diseases, hormonal adaptations, or metabolic efficiency that ensues with long-term caloric restriction or overfeeding. This underscores the continued importance of routine monitoring of energy expenditure with more direct measurement for DC in high-stakes competition preparation.

5. Future Directions

Future research should focus on:

- **Integrating Wearable Technology:** Combining K-M predictions with real-time energy expenditure tracking could refine daily caloric planning for athletes.
- **Machine Learning Approaches:** Predictive models trained on large datasets incorporating metabolic, hormonal, and genetic markers could enhance accuracy beyond single-variable equations.
- **Population-Specific Adjustments:** While K-M performs well for athletes, further validation in elderly, pediatric, and clinical populations could expand its utility.
- **Dynamic Periodization Models:** Research into how energy predictions should adapt to seasonal training cycles could improve performance outcomes and athlete health.

In conclusion, the K-M equation provides an evidence-based solution, an accurate method for personalized EE estimation, bridging the gap between high-cost laboratory techniques and field application. By accounting for LBM, it is capable of precision

nutrition and performance tuning, an essential instrument for practitioners or researchers in exercise physiology, sports nutrition, and body building science.

Conclusions

The Katch-McArdle (K-M) one is a huge leap forward in the estimation of Resting Metabolic Rate (RMR) and Total Daily Energy Expenditure (TDEE), since lean body mass (LBM) is determinant for metabolic activity. Evidence from validation studies shows that K-M consistently achieves higher accuracy and reduced error margins compared to weight-based models such as Harris–Benedict and Mifflin–St. Jeor, making it particularly suitable for resistance-trained athletes, bodybuilders, and populations with atypical body composition.

For sports participants, the K-M equation is a simple and easily scalable tool for personalizing nutrition strategies, achieving optimal training periods and reaching targeted body composition changes. Its applicability also applies to clinical settings where precise caloric determination is crucial for patient treatment and rehabilitation. Nevertheless, the accuracy of the equation relies substantially on a body-composition measurement precision, highlighting the necessity for standardization in measurement techniques and periodic reassessment.

In conclusion, the K-M model integrates laboratory gold-standard measures (e.g., indirect calorimetry - IC) with field applicability and may foster personalized evidence-based decision-making in both athletic and clinical practice. Prospective studies could look at combining predictive models with digital technologies, dynamic energy calculations (modeling of day-to-day variability) and AI-driven analytics to enhance accurate predictions in larger and broader populations.

References

1. Babalola, J. F. (2005). Physical exercise and dieting for weight control. *International Journal of African & African American Studies*, 4(2), 24–28.
2. Baugh, M. E., Ahrens, M. L., Burns, A. K., Sullivan, R. M., Valle, A. N., Hanlon, A. L., & DiFeliceantonio, A. G. (2025). Metrics of glycemic control but not body weight influence flavor nutrient conditioning in humans. *Physiology & Behavior*, 115037, <https://doi.org/10.1016/j.physbeh.2025.115037>
3. Branco, M. C., Alves, F. D., Zanella, P. B., & Souza, C. G. (2018). Comparison between equations for estimation of resting energy expenditure and indirect calorimetry in gymnasts. *Revista Brasileira de Nutrição Esportiva*, 12(70), 195–203.
4. Comana, F. (2016). Comparing energy expenditure prediction equations. *NASM White Paper Series*.
5. El-Kateb, S., Sridharan, S., Farrington, K., Fan, S., & Davenport, A. (2018). Comparison of equations of resting and total energy expenditure in peritoneal

dialysis patients using body composition measurements determined by multi-frequency bioimpedance. *Clinical Nutrition*, 37(2), 646–650. <https://doi.org/10.1016/j.clnu.2017.02.007>

- 6. Enachescu, V. A., Bejinariu, C. G., & Petcu, C. (2024). Adapting the school organization to precocious puberty - multiple implications of an increasingly present phenomenon, ICERI2024 Proceedings, pp. 5400-5406., <https://doi.org/10.21125/iceri.2024.1320>
- 7. Fullmer, S., Benson-Davies, S., Earthman, C. P., Gallagher, D., Hoover, L., Livingston, E. H., ... & Kushner, R. F. (2015). Evidence analysis library review on energy expenditure prediction equations for healthy individuals. *Journal of the Academy of Nutrition and Dietetics*, 115(9), 1417–1443. <https://doi.org/10.1016/j.jand.2015.05.010>
- 8. Hall, C., Figueroa, A., Fernhall, B., & Kanaley, J. A. (2004). Energy expenditure of walking and running: Comparison with prediction equations. *Medicine & Science in Sports & Exercise*, 36(12), 2128–2134. <https://doi.org/10.1249/01.MSS.0000147584.87788.0E>
- 9. Hu, S., Zhang, X., Stamatiou, M., Hambly, C., Huang, Y., Ma, J., ... & Speakman, J. R. (2022). Higher than predicted resting energy expenditure and lower physical activity in healthy underweight Chinese adults. *Cell Metabolism*, 34(10), 1413-1415, <https://doi.org/10.1016/j.cmet.2022.05.012>
- 10. Ishikawa-Takata, K., Nakae, S., Sasaki, S., Katsukawa, F., & Tanaka, S. (2021). Age-related decline in physical activity level in the healthy older Japanese population. *Journal of nutritional science and vitaminology*, 67(5), 330-338, <https://doi.org/10.3177/jnsv.67.330>
- 11. Jamil, K., Baqir, S. R., Fahim, M. F., Lata, P., Khan, B., & Aziz, M. (2023). Management of Obesity through Diet and Exercise: Management of Obesity. *DIET FACTOR (Journal of Nutritional and Food Sciences)*, 20-28, <https://doi.org/10.54393/df.v4i03.87>
- 12. Kenney, W. L., Wilmore, J. H., & Costill, D. L. (2022). *Physiology of sport and exercise*. Human kinetics.
- 13. LOONEY, D., LAVOIE, E., NOTLEY, S., HOLDEN, L., ARCIDIACONO, D., POTTER, A., ... & FRIEDL, K. (2023). Metabolic costs of walking with weighted vests. *Medicine and Science in Sports and Exercise*, 56(6), <https://doi.org/10.1249/mss.0000000000003400>
- 14. MacLaren, D., & Morton, J. (2024). *Biochemistry for sport and exercise metabolism*. John Wiley & Sons.
- 15. McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). *Exercise physiology: Nutrition, energy, and human performance* (7th ed.). Lippincott Williams & Wilkins.
- 16. McKay, A. K., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., ... & Burke, L. M. (2021). Defining training and performance caliber: a participant classification framework. *International journal of sports physiology and performance*, 17(2), 317-331, <https://doi.org/10.1123/ijsspp.2021-0451>
- 17. O'Neill, J. E. R., Corish, C. A., & Horner, K. (2023). Accuracy of resting metabolic rate prediction equations in athletes: A systematic review with

meta-analysis. *Sports medicine*, 53(12), 2373-2398, <https://doi.org/10.1007/s40279-023-01896-z>

18. Pontzer, H., Yamada, Y., Sagayama, H., Ainslie, P. N., Andersen, L. F., Anderson, L. J., ... & IAEA DLW Database Consortium §. (2021). Daily energy expenditure through the human life course. *Science*, 373(6556), 808-812, <https://doi.org/10.1126/science.abe5017>

19. Speakman, J. R., & Westerterp, K. R. (2010). Associations between energy demands, physical activity, and body composition in free-living humans. *European Journal of Clinical Nutrition*, 64(Suppl. 2), S100–S104. <https://doi.org/10.1038/ejcn.2010.120>

20. Weir, J. B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. *Journal of Physiology*, 109(1–2), 1–9. <https://doi.org/10.1113/jphysiol.1949.sp004363>

21. Wilmore, J. H., & Costill, D. L. (2005). *Physiology of sport and exercise* (4th ed.). Human Kinetics.

22. Xu, X., Abi, N., Yang, Z., Ma, T., Zhang, N., Zheng, Y., & Dong, J. (2025). Equations for estimating resting energy expenditure in patients on peritoneal dialysis. *Clinical Kidney Journal*, 18(2), sfaf004, <https://doi.org/10.1093/ckj/sfaf004>